UNIVERSIDAD PÚBLICA DE EL ALTO ÁREA DE CIENCIAS AGRÍCOLAS, PECUARIAS Y RECURSOS NATURALES CARRERA DE INGENIERÍA AGRONÓMICA

TESIS DE GRADO

PRODUCCIÓN DE CEBOLLIN (*Allium schoenoprasum* L.) CON DIFERENTES NIVELES DE DOS ABONOS EN EL MUNICIPIO DE LURIBAY COMUNIDAD DE ALTO BRAVO

Por:

Esmeralda Sangalli Paco

EL ALTO – BOLIVIA Septiembre, 2025

UNIVERSIDAD PÚBLICA DE EL ALTO ÁREA DE CIENCIAS AGRÍCOLAS, PECUARIAS Y RECURSOS NATURALES CARRERA DE INGENIERÍA AGRONÓMICA

PRODUCCIÓN DE CEBOLLIN (*Allium schoenoprasum* L.) CON DIFERENTES NIVELES DE DOS ABONOS EN EL MUNICIPIO DE LURIBAY COMUNIDAD DE ALTO BRAVO

> Tesis de Grado presentado como requisito para optar el Título de Ingeniero Agrónomo

Esmeralda Sangalli Paco

Asesores:
M. Sc. Lic. Ing. Ramiro Raúl Ochoa Torrez
Tribunal Revisor:
M. Sc. Lic. Freddy Lucio Loza De La Cruz
M. Sc. Lic. Ing. Ciro Raúl Quiape Callocosi
Lic. Ing. David Luis Callisaya Gutiérrez
Aprobada
Presidente Tribunal Examinador

DEDICATORIA:

Con todo mi cariño y gratitud, dedico este trabajo de tesis a mis padres: a mi padre, Gabino Sangalli Medrano, por su apoyo constante y su confianza inquebrantable a lo largo de mi formación académica, y a mi querida madre, Eufracia Paco Condori, por su amor incondicional, sacrificio y por ser un ejemplo de vida que me ha guiado en cada paso de mi camino. Su dedicación y esfuerzo han sido mi mayor inspiración.

Dedico esta tesis a mis hermanas Zulma, Vannesa y Karla, y a mis hermanos Richard, Anchelho, Marcos, Oscar y Roger, por su amor y apoyo incondicional. A mis sobrinos Nahuel y Hasel, por su alegría y ánimo, que me impulsaron a seguir adelante. A todos ustedes, gracias por estar siempre a mi lado y brindarme fuerzas en cada momento de este proceso.

AGRADECIMIENTOS

El más profundo agradecimiento a la Universidad Pública de El Alto (UPEA) por haberme acogido y formado en sus aulas durante los años de estudio y al plantel docente de la Carrera de Ingeniería Agronómica por los conocimientos compartidos a lo largo de mi formación profesional.

Mi más sincero agradecimiento a mi asesor de tesis, M. Sc. Ing. Ramiro Raúl Ochoa Torrez, por su disposición de tiempo, su paciencia, apoyo y colaboración, que fueron fundamentales para hacer realidad esta investigación.

Un reconocimiento especial al tribunal revisor, conformado por M. Sc. Lic. Freddy Lucio Loza de la Cruz, M. Sc. Ing. Ciro Raúl Quiape Callocosi y Lic. Ing. David Luis Callisaya Gutiérrez, por las correcciones y sugerencias que enriquecieron de manera significativa el documento final.

Asimismo, expreso mi sincero agradecimiento a mi enamorado, Jhon Quispe Choque, por su constante apoyo, comprensión y motivación, que constituyeron un pilar fundamental para la culminación de esta investigación; así como a mi amiga Mary Soledad Quenallata Paco, cuyo acompañamiento académico y personal, compartiendo alegrías, ideas y momentos difíciles, contribuyó significativamente en el desarrollo de este trabajo

Finalmente, a todas las personas e instituciones que colaboraron directa o indirectamente para hacer realidad este proyecto, expreso mi más sincero agradecimiento.

CONTENIDO

ÍND	ICE DE T	EMASi
ÍND	ICE DE C	UADROSv
ÍND	ICE DE F	IGURASvi
ÍND	ICE DE A	NEXOSvii
ABF	REVIATUR	RASviii
RES	SUMEN	ix
ABS	STRACT	x
		ÍNDICE DE TEMAS
1.	INTROD	UCCIÓN1
	1.1. Plaı	nteamiento del problema2
	1.2. Jus	tificación3
	1.3. Obj	etivos4
	1.3.1.	Objetivo general4
	1.3.2.	Objetivos específicos4
	1.4. Hip	ótesis4
2.	REVISIÓ	N BIBLIOGRÁFICA5
	2.1. Orig	gen del cultivo de cebollín5
	2.1.1.	Clasificación Taxonómica5
	2.1.2.	Superficie cultivada del cebollín en el mundo6
	2.1.3.	Zona de producción en Bolivia6
	2.1.4.	Fotoperiodo6
	2.2. Car	acterísticas botánicas del cebollín6
	2.2.1.	Bulbo
	2.2.2.	Tallos

	2.2.3.	Hojas	7
	2.2.4.	Forma de la raíz	7
	2.2.5.	Beneficios del cebollín	7
	2.2.6.	Uso del cebollín para el consumo y su conservación	8
	2.3. Eco	logía	8
	2.3.1.1	1. Limpieza del terreno	9
	2.3.1.2	2. Preparación de terreno	9
	2.3.1.3	3. Plantación	9
	2.3.1.4	4. Distancia de siembra	10
	2.3.1.5	5. Riego	10
	2.3.1.6	6. Requerimientos nutricionales del cebollín	11
	2.3.1.7	7. Funciones de los principales elementos nutritivos	11
	2.3.1.8	3. Uso y valor nutricional	12
	2.3.1.9	9. Cosecha del cebollín	13
	2.3.1.1	10. Manejo post cosecha	14
3.	MATERIA	ALES Y MÉTODOS	15
	3.1. Loca	alización	15
	3.1.1.	Ubicación Geográfica	15
	3.1.2.	Características Edafoclimáticas	16
	3.1.2.1	1. Clima	16
	3.1.2.2	2. Suelo	16
	3.1.2.3	3. Fauna	16
	3.2. Mate	eriales	17
	3.2.1.	Material de estudio	17
	3.2.2.	Material biológico	17
	3.2.3.	Material de escritorio	18

	3.2.4.	Material de campo	18
	3.3. Metod	dología	19
	3.3.1. F	Preparación de suelo	19
	3.3.2.	Delimitación de unidades experimentales	19
	3.3.2.1.	Abonamiento del terreno	19
	3.3.2.2.	Sistema de riego	19
	3.3.2.3.	Plantación	19
	3.3.2.4.	Manejo del cultivo	20
	3.3.3.	Diseño experimental	21
	3.3.4. F	Factores de estudio	21
	3.3.4.1.	Formulación de tratamientos	22
	3.3.5.	Variables de respuesta	22
	3.3.5.1.	Porcentaje de prendimiento (%)	22
	3.3.5.2.	Altura de planta(cm)	22
	3.3.5.3.	Numero de hojas	22
	3.3.5.4.	Diámetro de tallo (mm)	22
	3.3.5.5.	Peso de la cosecha (g)	23
	3.3.5.6.	Rendimiento por metro cuadrado	23
	3.3.6. A	Análisis económico	23
4.	RESULTA	DOS Y DISCUSIÓN	25
	4.1. Temp	peratura Máximas y Mínimas	25
	4.2. Porce	entaje de prendimiento	26
	4.2.1.	Altura de planta	27
	4.3. Nume	ero de hojas	29
	4.4. Diám	etro de tallo	31
	4.5. Peso	por metro cuadrado	34

	4.6. Rendimiento por Parcela	36
	4.7. Análisis Económico	38
5.	CONCLUSIONES	41
6.	RECOMENDACIONES	42
7.	REFERENCIAS BIBLIOGRAFICAS	43
8.	ANEXO	47

ÍNDICE DE CUADROS

Cuadro 1.	Vegetacion predominante	17
Cuadro 2.	Prendimiento del cebollín	26
Cuadro 3.	Análisis de varianza de altura de planta	27
Cuadro 4.	Promedio de la altura de plantas para distintos abonos en el cebollín	28
Cuadro 5.	Análisis comparativo de la altura de plantas de cebollín según dosis	28
Cuadro 6.	Comparación de medias del efecto factorial de cultivo	29
Cuadro 7.	Análisis de varianza de número de hojas	30
Cuadro 8.	Promedio de numero de hojas de distintos abonos en el cebollín	30
Cuadro 9.	Promedio de número de hojas de la interacción	31
Cuadro 10.	Análisis de varianza de diámetro de tallo	31
Cuadro 11.	El diámetro de tallo del factor abono	32
Cuadro 12.	Diámetro de tallo de factor dosis	33
Cuadro 13.	Diámetro de tallo de la dosis de abono	34
Cuadro 14.	Análisis de varianza del peso de metro cuadrado	34
Cuadro 15.	Peso de metro cuadrado del factor abono	35
Cuadro 16.	El peso de metro cuadrado del factor dosis	35
Cuadro 17.	Peso de metro cuadrado de la interacción de dosis de abono	36
Cuadro 18.	Análisis de varianza de rendimiento por parcela	37
Cuadro 19.	Promedio del rendimiento de la parcela del factor abono	37
Cuadro 20.	Promedio del rendimiento por parcela del factor dosis	38
Cuadro 21.	Promedio de rendimiento de la parcela de dosis y abono	38
Cuadro 22.	Beneficio y costos	39

ÍNDICE DE FIGURAS

Figura 1.	Localización del centro de investigación	15
Figura 2.	Temperatura del municipio de Luribay	26

ÍNDICE DE ANEXOS

Anexo 1.	Croquis del experimento diseño de bloques completamente al azar	48
Anexo 2.	Análisis de abono	49
Anexo 3.	Preparación de terreno	50
Anexo 4.	Nivelación del sustrato	50
Anexo 5.	Limpieza de la semilla	51
Anexo 6.	Riego inicial posterior al surqueo	52
Anexo 7.	Plantación del cebollín	52
Anexo 8.	Evaluación del prendimiento del cebollín (10 días)	53
Anexo 9.	primera evaluación de variables (15 días)	53
Anexo 10.	Aporque del cebollín	54
Anexo 11.	Cebollín: crecimiento tras aporque y riego	55
Anexo 12.	Riego del cebollín	56
Anexo 13.	Toma de datos con el vernier	56
Anexo 14.	Aporque del Cebollín	57
Anexo 15.	Altura de hoja	58
Anexo 16.	Cosecha del cebollín por metro cuadrado	59
Anexo 17.	Lavado manual del cebollín en recipientes	59
Anexo 18.	lavado del cebollín en el agua de la sequia	60
Anexo 19.	Proseguimos al pesaje del cebollín	61
Anexo 20.	Se procedió a formar manojos de cebollín al finalizar la cosecha	62

ABREVIATURAS

Hr Horas

cm Centímetro

Km Kilómetros

mm Milímetros

M Metros

Kcal Calorías

kg Kilogramos

g Gramos

msnm Metros sobre el nivel del mar

mg Miligramos

mcg Microgramos

% porcentaje

Σ Sumatoria

RESUMEN

Con el propósito de evaluar la producción de cebollín (*Allium schoenoprasum* L.) bajo distintos niveles de abonos en el municipio de Luribay, se llevó a cabo la presente investigación. El estudio se desarrolló en la comunidad de Alto Bravo del municipio de Luribay del departamento de La Paz, ubicada geográficamente a 16º 960' 44" de Latitud Sur y 67º 68' 42" de Longitud Oeste, con una altitud de 2.150 m s. n. m. Para ello, se utilizó material biológico consistente en bulbos de cebollín, así como abonos de origen ovino y bovino, junto con los insumos y herramientas necesarios para la producción del cultivo.

Las actividades realizadas incluyeron la preparación del suelo, delimitación de unidades experimentales, abonamiento, riego, trasplante y manejo general del cultivo, incluyendo el control de malezas y aportes complementarios. El experimento se condujo bajo un Diseño de Bloques Completamente al Azar (DBCA) con arreglo factorial y un tratamiento extra como testigo. Se establecieron tres bloques, cinco tratamientos y tres repeticiones, distribuyéndose aleatoriamente 80 unidades por cada tratamiento experimental, considerando como factores: A (tipo de abono) y B (nivel de abono).

Se evaluaron las siguientes variables de respuesta: porcentaje de prendimiento, altura de planta (cm), número de hojas por mata, diámetro de tallo (mm), peso de cosecha (g), rendimiento por metro cuadrado (g/m²) y análisis económico mediante la relación beneficio/costo.

Los resultados indicaron que, en la mayoría de las variables evaluadas, los tratamientos no mostraron diferencias estadísticamente significativas. No obstante, el tratamiento T2, que consistió en la aplicación de abono de ovino a 10 kg/m², evidenció tendencias positivas en el crecimiento vegetativo y se destacó como el más rentable, con una relación beneficio/costo de 1,30.

Se concluye que la utilización de abonos orgánicos, especialmente el estiércol de ovino, puede favorecer el desarrollo vegetativo del cebollín; sin embargo, se requiere de investigaciones adicionales para determinar su efecto significativo bajo condiciones variables. Finalmente, se recomienda la aplicación racional de estos insumos como estrategia para promover prácticas agrícolas sostenibles y productivas en la región.

.

ABSTRACT

With the aim of evaluating the production of chives (*Allium schoenoprasum* L.) under different fertilizer levels in the municipality of Luribay, this research was conducted. The study took place in the community of Alto Bravo, geographically located at 16° 960' 44" South Latitude and 67° 68' 42" West Longitude, at an altitude of 2,150 m above sea level. Biological material used included chive bulbs, as well as sheep and cattle manure, along with the necessary inputs and tools for crop production.

The activities carried out included soil preparation, delineation of experimental units, fertilization, irrigation, transplanting, and general crop management, including weed control and additional nutrient applications. The experiment was conducted under a Completely Randomized Block Design (CRBD) with a factorial arrangement and an additional control treatment. Three blocks, five treatments, and three repetitions were established, with 80 units randomly distributed per experimental treatment. The factors considered were: A (type of fertilizer) and B (fertilizer level).

The following response variables were evaluated: establishment percentage, plant height (cm), number of leaves per chive plant, stem diameter (mm), harvest weight (g), yield per square meter (g/m²), and an economic analysis using the benefit/cost ratio.

Results indicated that, for most of the evaluated variables, treatments did not show statistically significant differences. However, treatment T2, which involved the application of sheep manure at 10 kg/m², showed positive trends in vegetative growth and was highlighted as the most profitable, with a benefit/cost ratio of 1.30.

It is concluded that the use of organic fertilizers, especially sheep manure, can promote the vegetative development of chives; however, further research is needed to determine its significant effect under variable conditions. Finally, the rational use of these inputs is recommended as a strategy to promote sustainable and productive agricultural practices in the region.

1. INTRODUCCIÓN

La producción agraria mundial desempeña un papel esencial al garantizar el suministro de alimentos a la población humana y promover su desarrollo económico y social. Entre los productos destacados se encuentran las hortalizas, reconocidas como una fuente indispensable de minerales y vitaminas fundamentales para la salud. Dentro de este grupo, el cebollín (*Allium schoenoprasum* L.), también llamado cebollino, sobresale por su valor nutritivo y su versatilidad en la gastronomía.

El cultivo de cebollín es adaptable a distintas condiciones, siendo apto para diversas altitudes en regiones tropicales y desarrollándose en suelos de texturas variadas, como arcillosos, limosos y francos. Este alimento, más suave que la cebolla, tiene la particularidad de permitir el consumo tanto de su bulbo como de sus hojas, las cuales añaden color y un sabor distintivo a las preparaciones culinarias (Alforo, 2023).

Según Castro (2021), Bolivia tiene diferentes sistemas productivos como ser tradicional, ecológico, convencional y saberes locales, considerado como un patrimonio social importante cuya explotación sostenible puede lograr competitividad frente a otros países. Entre los objetivos están la producción de semillas de calidad, la obtención de plántulas sanas vigorosas, la formulación de sustratos pesticidas ecológicos que acompañen a las plántulas para garantizar su mejor desarrollo.

El cebollín, una de las hortalizas más importantes y ampliamente cultivadas a nivel mundial, se ha consolidado a lo largo del tiempo como una planta altamente beneficiosa para el ser humano, gracias a sus propiedades nutritivas y medicinales.

En la actualidad, la agricultura hortícola experimenta un cambio significativo con la adopción de sistemas de producción intensiva, como los invernaderos, que ofrecen ventajas sustanciales frente a los métodos tradicionales a cielo abierto. Los invernaderos proporcionan un entorno protegido que optimiza el crecimiento de los cultivos y reduce los riesgos asociados a factores ambientales adversos. Por su parte, la producción a campo abierto sigue dependiendo de las condiciones climáticas estacionales y de técnica.

Los abonos orgánicos se obtienen a partir de la descomposición de materiales de origen vegetal, animal o mixto y desempeñan un papel fundamental en la mejora de la fertilidad del suelo, lo que favorece el rendimiento y la productividad de los cultivos (Suguilanda,

1996). La actividad agrícola puede agotar la materia orgánica del suelo debido a la extracción constante de nutrientes, por lo que es esencial aplicar sustancias orgánicas para restaurar su equilibrio y mejorar su capacidad nutritiva.

En este sentido, Pérez (2023), señala que su uso es especialmente recomendable en suelos degradados y con bajos niveles de materia orgánica. Además de enriquecer el suelo, estos abonos favorecen el crecimiento de las plantas al estimular la producción de fitohormonas y fitorreguladores naturales, un proceso que puede potenciarse mediante el uso de abonos fermentados (Ramos y Terry, 2014).

Las investigaciones existentes sobre la producción de cebollín en América se han concentrado principalmente en México y Perú, países que destacan como los mayores productores de esta hortaliza en la región. En estos países, el cebollín tiene un papel significativo en la gastronomía y la agricultura, lo que ha impulsado estudios sobre sus condiciones de cultivo, rendimiento y características comerciales (Ramos, 2014).

A pesar de la escasez de información estadística detallada, el cebollín sigue siendo un cultivo importante en la producción hortícola de América, tanto para el consumo interno como para la exportación en mercados específicos.

Castro (2021), desarrollo una investigación en el cual determinó tres densidades de siembra de cebollín en el Municipio de Mecapaca, en el cual los resultados obtenidos indican que existen variaciones entre los factores estudiados, con diferencias significativas entre los distintos ambientes. Se observa que las plantas presentan un mayor desarrollo y un incremento en el número de hojas en menor tiempo cuando se cultivan en ambientes protegidos, en comparación con el cultivo en campo abierto. En cuanto al factor densidad de siembra, las diferencias son más evidentes: las plantas alcanzaron mayor altura y mayor número de hojas con un espaciamiento de 0,15 m entre plantas, mientras que un marco de 0,05 m mostró un desarrollo menos destacado.

1.1. Planteamiento del problema

El problema principal en la producción de cebollín en Bolivia radica en las múltiples dificultades que afectan su cultivo, comercialización y rentabilidad. Estas dificultades pueden agruparse en tres áreas clave: Factores ambientales y edáficos, las temperaturas extremas, las variaciones de altitud, los suelos deficientes y la erosión representan desafíos

significativos para el crecimiento y desarrollo óptimo del cebollín las plagas y enfermedades presencian de pulgones, moscas, enfermedades fúngicas y bacterianas afecta negativamente la calidad y rendimiento del cultivo, generando pérdidas para los productores.

La falta de capacitación en técnicas agronómicas actualizadas dificulta la optimización de la producción. Asimismo, las deficiencias en infraestructura de transporte restringen el acceso a mercados, afectando la comercialización y la rentabilidad de los agricultores. En conjunto, estos problemas ponen en riesgo la sostenibilidad del cultivo de cebollín en Bolivia, limitando su potencial como un alimento clave para la seguridad alimentaria y el desarrollo económico de los productores (Pierre, 2022).

El uso de abonos orgánicos en la producción de alimentos, vuelve a tener importancia debido a los problemas de contaminación ambiental, por el uso excesivo de fertilizantes químicos y pesticidas. En la actualidad se pretende la obtención de productos agroalimentarios naturales con un nivel de calidad mejor que lo que ofrece la agricultura convencional (Arias, 2012).

1.2. Justificación

La producción de cebollín en Bolivia enfrenta múltiples desafíos que comprometen su desarrollo y sostenibilidad. Factores ambientales como temperaturas extremas, altitudes variables y suelos empobrecidos afectan su crecimiento, mientras que la erosión disminuye la fertilidad del suelo, dificultando su cultivo a largo plazo. Además, plagas como pulgones y moscas, junto con enfermedades fúngicas y bacterianas, reducen la calidad y el rendimiento del producto, generando pérdidas económicas para los agricultores.

El problema crítico es la falta de acceso a información actualizada y capacitación en técnicas agronómicas modernas, lo que limita la adopción de prácticas eficientes. A esto se suma la deficiente infraestructura de transporte, que restringe la comercialización y disminuye la rentabilidad del cultivo, dado el alto valor nutricional del cebollín y su importancia en la seguridad alimentaria, es fundamental implementar estrategias que mejoren su producción y distribución. Optimizar estos aspectos no solo beneficiará a los productores, sino que también fortalecerá el sector agrícola y la economía del país mediante la información obtenida de la investigación sobre el cebollín (*Allium schoenoprasum* L.) Con diferentes niveles de dos abonos en el municipio de Luribay comunidad de Alto Bravo.

La implementación de abonos orgánicos no solo mejora la calidad y sostenibilidad de los cultivos, sino que está también promueve un cambio de perspectiva entre los productores hacia prácticas más responsables con el medio ambiente. Aunque supone un costo económico inicial, el uso eficiente de materia orgánica es una necesidad crucial para garantizar una producción sostenible y una alimentación saludable.

1.3. Objetivos

1.3.1. Objetivo general

 Evaluar la producción de cebollín (Allium schoenoprasum L.), bajo diferentes niveles de abonos en el municipio de Luribay, comunidad de Alto Bravo.

1.3.2. Objetivos específicos

- Analizar la producción del cultivo de cebollín con la aplicación de diferentes niveles de dos abonos de ovino y bovino.
- Determinar el rendimiento de la producción del cultivo de cebollín.
- Determinar el beneficio/costo del uso de abonos orgánicos en el cultivo de cebollín

1.4. Hipótesis

- Ho: No existe diferencia en la producción del cultivo de cebollín (*Allium schoenoprasum* L.), con la aplicación de abonos de ovino y bovino.
- Ho: no existe efectos significativos en las variables productivas del cultivo de cebollín debido a los diferentes niveles de abonos.

2. REVISIÓN BIBLIOGRÁFICA

2.1. Origen del cultivo de cebollín

El cebollín (*Allium schoenoprasum* L.) se conoce desde hace más de 5000 años en estado silvestre, aunque los primeros registros aparecen recién en el siglo XIX. En aquel tiempo, los cebollines silvestres eran muy apreciados por los pueblos indígenas de Norteamérica. Esta hortaliza, originaria del hemisferio norte (Canadá y Siberia), ha expandido su cultivo con fines culinarios a casi todo el mundo. Su producción aumentó debido al aroma característico de sus hojas, así como a su resistencia frente a heladas y plagas. En la actualidad, los países asiáticos destacan como los principales productores, dado que allí se cultiva desde hace siglos, además de en algunos países de América como México, Venezuela y Colombia. Por ello, el cebollín se considera uno de los cultivos más relevantes tanto para la exportación como para el consumo interno (Castro, 2021).

Bonilla (2011), informa que la planta ha sido cultivada en Europa desde al menos el siglo XVI, comenzando en Italia y expandiéndose al resto de Europa durante la Edad Media. Los cebollines fueron incluidos en catálogos de semilla inglesa desde 1726 y estaban en jardines americanos desde 1806 durante el siglo XIX, el cebollín se hizo muy popular en Europa, en particular en la cocina francesa.

2.1.1. Clasificación Taxonómica

Según (APG, 2016), señala la siguiente clasificación taxonómica:

Dominio: Eucariota

Reino: Vegetal o Plantae Clado: Angiospermas

Clado: Monocoltiledoneas

Orden: Asparagales

Familia: Amarylidaceae

Género: Allium

Especie: Alium schoenoprasum Chives

2.1.2. Superficie cultivada del cebollín en el mundo

Mayormente se comercializa las hojas del cebollín su demanda se debe a su valor nutricional y sabor que es más suave que la cebolla, una hortaliza con mayor índice de crecimiento productivo de mucha importancia en el mundo también se cultivan aproximadamente unos 1,8 millones de hectáreas con un rendimiento de 28 millones de toneladas por año, con un rendimiento promedio de 8,9 t/ha, la producción de América Latina tiene el 6% del rendimiento del mundo, siendo los países más importantes del ámbito de exportación, México, Venezuela, Colombia, Costa Rica, Argentina, Perú y Chile (Popescu, 2013).

2.1.3. Zona de producción en Bolivia

Se siembra en invernadero y campo abierto mostrando una diferencia en la producción, es dada por la condiciones agroclimáticas estas favorecen al desarrollo del cultivo, las zonas productoras se encuentran en los valles del cercado, Padcaya, Provincia Arce de Cochabamba, Meca paca, Palca, Provincia Murillo de la Paz, Chuquisaca, Potosí, Tarija y Santa Cruz, producción de pequeños productores realizan la actividad de la forma manual (Quezada, 2011).

2.1.4. Fotoperiodo

El cebollín es una planta que prefiere áreas soleadas entre 12 hrs/día, aunque se adapta bajo la sombra parcial con horas de 8 a 10 horas de luz directa, la siembra adecuada inicia a principios de la primavera, considerando cultivos de día largo, una época adecuada para el crecimiento del cebollín y de ciclo vegetativo corto, en tanto los de ciclo largo se realiza la siembra a finales de otoño, donde la producción se realiza en invierno, ya que el crecimiento es muy lento del ciclo vegetativo, el cebollín es considerado una planta perenne, realizando varios cortes durante su etapa vegetativa (Leyva, 2019).

2.2. Características botánicas del cebollín

El cebollín (*Allium schoenoprasum* L), exhala un ligero y delicado sabor a cebolla por lo que es considerado una de las finas hierbas. Presenta de contenido alto de vitamina C y B-carotenos. También cantidades elevadas de Vitamina A, Potasio y Calcio, que contiene 20% - 34% de proteína, 3,4% - 7,5% de hidratos de carbono y fibra (Fernandez, 2003).

2.2.1. Bulbo

El bulbo tiene una forma cónica de color blanco, muy delgado casi ausente, tiene de 2 a 3 cm de largo del cual forma el diámetro del tallo, crece formando densos racimos desde la raíz (Alfaro, 2023).

2.2.2. Tallos

El tallo del cebollín es marcadamente corto, representado por una masa aplastada llamada disco basal, con entrenudos cortos, el mismo que genera un bulbo cónico que forma un falso tallo o seudotallo (Pierre, 2022).

2.2.3. Hojas

Se describe una planta bulbosa con hojas tubulares basales que forman una roseta erecta o dispersa desde bulbos subterráneos. Las hojas son de color verde oscuro, huecas y fibrosas, compuestas por una vaina envolvente en la base y una porción superior laminar tubular hueca con punta redondeada. Las hojas crecen sucesivamente, con cada nueva hoja emergiendo a través de la vaina de la hoja anterior (Alfaro, 2023).

2.2.4. Forma de la raíz

Las raíces son de mayor número y salen de un mismo sitio dando un aspecto de cabellera, que son blancas y fibrosas, carecen de raíz principal. El proceso de la raíz contempla dos tipos de crecimiento: un crecimiento horizontal que luego pasa a vertical (Alforo, 2023).

2.2.5. Beneficios del cebollín

El cebollín, como hortaliza de hoja verde, representa un valioso componente dentro de una alimentación equilibrada gracias a sus destacados beneficios nutricionales y medicinales. Es una excelente fuente de vitaminas, minerales, fibra y ácido fólico, lo que favorece la regulación del colesterol, mejora la circulación sanguínea y fortalece el sistema inmunológico. Además, sus propiedades antioxidantes y antibacterianas lo convierten en un aliado natural en la prevención de infecciones, gripes y resfríos. Más allá de su valor nutritivo, el cebollín realza el sabor de diversos platos, por lo que su consumo habitual no solo aporta bienestar, sino que también contribuye a mantener un estilo de vida saludable y una dieta balanceada (Michelin, 2021).

2.2.6. Uso del cebollín para el consumo y su conservación

El cebollín puede aprovecharse de diversas formas en la cocina, que generalmente se utiliza en ensaladas picado finamente y en crudo para aportar sabor fresco. También es ideal en sofritos, acompañado de ingredientes como ajo, ají y culantro, y se incorpora a guisos, menestras o arroces, actuando como un condimento natural que enriquece el valor nutricional de los platos.

Para conservarlo en buen estado, es importante mantenerlo en refrigeración, preferiblemente en su empaque original. Si se desea prolongar su frescura, se puede envolver en papel de cocina humedecido antes de guardarlo. Asimismo, es posible congelarlo picado, lo que permite tenerlo listo para usar en porciones cuando se necesite, así, se aprovechan al máximo sus beneficios sin desperdicio (Michelin, 2021).

2.3. Ecología

Según Alfaro (2023), requiere:

- **Suelo:** el cebollín se adapta a diferentes tipos de suelo con un pH de 4,5 a 7,9 no obstante, esta prefiere suelos ricos de materia orgánica y que sean ligeros. Si se quiere obtener plantas de calidad se debe considerar trabajar en suelos arenosos a francos, que nos permita una mayor producción de la planta.
- Temperatura: La temperatura ideal para el crecimiento de este cultivo es de 10 a 40 °C, normalmente, temperaturas más altas tienden a producir cebollines que son muy fibrosos y secos; temperaturas más bajas hacen que su crecimiento sea lento. Es una planta susceptible a las heladas para el mejor desarrollo debe tener la temperatura de 10 y 40 °C, las óptimas se encuentran de 30 °C, en la cual se acelera el desarrollo vegetativo. Puede tolerar ligeras heladas, es sensible a altas temperaturas y días largos, se establece con mucha facilidad a los climas fríos, en cambio puede representar un retraso progresivo en su desarrollo, debido al descenso de temperatura.
- Fotoperiodo: El fotoperiodo tiene un impacto significativo en las plantas, ya que la duración diaria de la luz está estrechamente relacionada con diversos procesos de crecimiento y desarrollo, como la germinación, estolonización, bulbación, elongación de tallos y floración. Estos efectos, además, están influenciados por

otros factores ambientales, como la temperatura, así como por el estado de desarrollo de la planta (Hernández, 2015).

Campo abierto: En la producción a campo abierto de cebollines, sin protección contra la radiación solar, la aplicación de abono de ovino y bovino mejora significativamente el suelo y el crecimiento de las plantas, mejora la estructura del suelo, retiene humedad y activa la vida microbiana, reduciendo el uso de fertilizantes químicos. Promueve la sostenibilidad al regenerar el suelo, disminuir la erosión y fomentar la biodiversidad, contribuyendo a un sistema agrícola más equilibrado y ecológico.

2.3.1.1. Limpieza del terreno

La roturación del suelo re realiza con la ayuda de un tractor, después de roturar el suelo, es importante nivelarlo para evitar zonas bajas que puedan acumular agua o zonas altas donde las plantas puedan no recibir suficiente agua para garantizar un buen drenaje adecuado y una distribución uniforme de agua para el respectivo riego (Peréz, 2023).

2.3.1.2. Preparación de terreno

El suelo debe prepararse de manera adecuada, asegurando una profundidad y aireación óptimas para el trasplante. Para ello, se recomienda realizar dos araduras cruzadas con rastras, alcanzando una profundidad de 25 a 30 cm, preferiblemente con dos meses de anticipación. Finalmente, se procede a nivelar el terreno e implementar las hileras (Hernández, 2015).

2.3.1.3. Plantación

Finalmente, para la plantación, se aplicó la técnica más utilizada, que consiste en colocar los bulbos en los surcos preparados. Estos surcos deben tener la profundidad adecuada para asegurar un buen desarrollo de las raíces y un crecimiento saludable de las plantas. Con las acciones previas de preparación del suelo, se garantiza que este se encuentre en las mejores condiciones posibles, favoreciendo un crecimiento óptimo y eficiente de los cebollines (Fernández, 2003).

El cultivo de cebollín mediante la plantación directa de bulbos resulta ser más rentable, ya que permite obtener brotes de hasta 50 cm de altura. Este sistema favorece ciclos continuos

de reproducción asexual a través de bulbillos o bulbos oblongos, lo que optimiza la producción y la rentabilidad del cultivo. La plantación de bulbos asegura una cosecha constante y de calidad, ya que los cebollines crecen de manera eficiente y rápida, reduciendo los tiempos entre siembra y cosecha. Además, la reproducción asexual a partir de bulbos garantiza una alta uniformidad en las plantas, lo que facilita su comercialización.

2.3.1.4. Distancia de siembra

La distancia de siembra varía según la estrategia de cosecha y el tiempo que se planee mantener el suelo ocupado con cebollín. En climas cálidos, la primera ramificación ocurre a los 45 días, y luego cada tres semanas se generan nuevas divisiones. Inicialmente, la planta desarrolla un solo pseudotallo, que posteriormente se divide en dos, luego en cuatro, ocho y así sucesivamente. Dado que un mayor número de pseudotallos al momento de la cosecha requiere más espacio, es recomendable reducir la densidad de siembra en estos casos (Hernández, 2015).

Según Villegas (2013), el cultivo de cebollín se puede realizar trasplantando los bulbos con un marco de plantación de 30 cm entre hileras y 20 cm entre plantas. Puede cultivarse en surcos simples o múltiples sobre camellones, y en los sistemas productivos actuales es común encontrarlo en macetas sobre repisas dentro de invernáculos. Recomiendan realizar esta práctica en las horas de la mañana o al final de la tarde para evitar la deshidratación del tejido.

La siembra de cebollín se realiza con una separación de 15 cm entre bulbos y 30 cm entre surcos, permitiendo un crecimiento óptimo. Antes de plantar, se riegan los surcos para mejorar la recepción de las plántulas. La siembra se lleva a cabo al final de la tarde para evitar la deshidratación, y se recomienda evaluar el material de siembra para garantizar su sanidad (Espinoza, 2016).

2.3.1.5. Riego

Según se recomienda el riego por aspersión en la etapa de establecimiento del cebollín para mantener la humedad del suelo en capacidad de campo hasta el inicio del crecimiento vegetativo, favoreciendo así su desarrollo. Sin embargo, este riego debe suspenderse posteriormente para evitar condiciones propicias para la propagación de enfermedades a diferencia de la cebolla, el cebollín tolera mejor la humedad, pero en cantidades moderadas,

especialmente cerca de la cosecha. El riego en el cultivo de cebollín puede realizarse mediante diferentes métodos, como surcos, aspersión o goteo, dependiendo de las características del terreno y los recursos disponibles. Incluso la lluvia puede ser beneficiosa, siempre que no sea excesiva ni provoque encharcamientos, ya que estos pueden afectar negativamente el cultivo (Hernández, 2015).

El riego se realizó previamente antes de la plantación para asegurar que el suelo estuviera suficientemente húmedo, facilitando la absorción de agua y promoviendo un mejor rendimiento de los bulbos. Posteriormente, se implementó el riego por inundación en surcos, aplicándolo cuatro veces por semana. Cada sesión de riego tuvo una duración de una hora, lo que garantizó que las raíces aprovecharan al máximo la humedad disponible en el suelo, favoreciendo un crecimiento saludable y uniforme del cultivo (Castro, 2021).

2.3.1.6. Requerimientos nutricionales del cebollín

El cebollín tiene un sistema radicular poco desarrollado y con limitada capacidad de absorción, pero es eficiente en la extracción de nutrientes durante su crecimiento foliar. Para un desarrollo óptimo, el suelo debe contener nutrientes de fácil absorción y aplicarse periódicamente, asegurando un suministro constante que maximice el rendimiento en distintos sistemas de producción (Rivas, 2002).

A los 7 días después del trasplante, el cultivo presenta una absorción aproximada de 50% de nitrógeno, 80% de fósforo, 60% de potasio, 40% de calcio y 1,2% de azufre. En cambio, a los 21 días del trasplante, los valores cambian, registrándose alrededor de 30% de nitrógeno, 10% de fósforo, 37% de potasio, 60% de calcio y 1,5% de azufre (Rivas, 2002).

Rivas (2002), indica que las recomendaciones de nutrientes se realizan sobre la base de: 100.0 kg/ha de N, 70.0 kg/ha de P_2O_5 70.0 kg/ha de P_2O_5 Pour El fosforo y potasio son los nutriente que se aplican antes del trasplante en un 100 %, mientras que en nitrógeno se aplica de forma escalonada empezando con un tercio del total y en dos aplicaciones antes de los 30 días después del trasplante.

2.3.1.7. Funciones de los principales elementos nutritivos

Según Castro (2021), las características de los nutrientes esenciales para el cultivo de cebollín se describen de la siguiente manera:

- El nitrógeno (N) es un nutriente esencial en la síntesis de proteínas, favoreciendo el crecimiento de nuevos órganos vegetativos y aumentando la productividad. Su deficiencia se manifiesta en un desarrollo limitado, amarilla miento de las hojas más antiguas, maduración temprana del tallo y bulbos de menor tamaño. El exceso de nitrógeno estimula un crecimiento vegetativo excesivo, retrasando la maduración de los bulbos y dificultando la floración. Este elemento juega un papel clave en el desarrollo y expansión de la planta.
- El fósforo (P) es fundamental para el transporte de energía en los procesos metabólicos y contribuye al desarrollo radicular. Favorece la maduración y prolonga la vida de la planta, mientras que las hojas nuevas adquieren un tono más oscuro. Su deficiencia provoca un crecimiento y maduración deficientes, afectando la resistencia de los tallos. El exceso no suele ser evidente, ya que sus efectos pueden confundirse con una deficiencia de calcio (Ca).
- El potasio (K) desempeña un papel fundamental en la síntesis de proteínas y el transporte de carbohidratos, contribuyendo a la maduración de la planta y aumentando su resistencia a enfermedades. Su deficiencia provoca la muerte de las hojas más viejas, seguida del secamiento y necrosis en las puntas. Un exceso de potasio puede generar deficiencias de magnesio (Mg), nitrógeno (N) y calcio (Ca) debido a su efecto antagónico.
- Además, el azufre (S), calcio (Ca) y magnesio (Mg) son necesarios en menor cantidad, ya que actúan como activadores enzimáticos, fortalecen las paredes celulares y mejoran su permeabilidad. El exceso de estos elementos puede causar necrosis en las puntas de las hojas, mientras que su deficiencia afecta el crecimiento del ápice, provocando su secado y curvatura. El azufre, en particular, influye en el sabor y pungencia del cebollín, ya que participa en la formación de compuestos azufrados, como los sulfuros de alilo, característicos de las plantas de la familia Aliáceas.

2.3.1.8. Uso y valor nutricional

El cebollín *Allium schoenoprasum* L. es una hierba aromática con un suave y delicado aroma a cebolla, lo que la convierte en una de las finas hierbas más apreciadas. Dentro del género *Allium*, destaca por su alto contenido de vitamina C y carotenos, además de ser una excelente fuente de vitamina A, potasio y calcio. Su composición incluye entre un 20% y 34% de proteínas, 3.4% a 7.5% de grasas y entre un 54% y 67% de hidratos de carbono y

fibra cultivado principalmente por el sabor de sus hojas, que recuerdan a la cebolla, pero son más delgadas y cortas, el cebollín es ampliamente utilizado en la cocina, donde se aprovechan sus tallos, flores y hojas como ingredientes aromáticos y decorativos (Castro, 2021).

El cebollín es una hortaliza verde, nutritiva y muy versátil que realza el sabor de diversos platos. Se utiliza crudo en ensaladas como las de papa, camote o legumbres, o cocido en sofritos, combinado con ajo, ají o culantro, para enriquecer guisos, menestras y arroces como un condimento natural. Para conservarlo adecuadamente y evitar desperdicios, se recomienda refrigerarlo en su empaque original, envolverlo en papel húmedo o congelarlo ya picado, lo que facilita su uso en porciones según se necesite (Castro, 2021).

De acuerdo con Leyva (2019), el cebollín, aunque suele ser subestimado, es un alimento rico en nutrientes. Es bajo en calorías y aporta una cantidad notable de vitaminas, minerales esenciales y antioxidantes. Por ejemplo, en el cuadro 2 tiene una porción de 100 gramos de cebollín crudo picado contiene aproximadamente.

El análisis bromatológico del cebollín (*Allium schoenoprasum* L.) evidencia un alto contenido de agua (90,6 %), lo que se traduce en un bajo aporte calórico de apenas 30 kcal por cada 100 g de producto fresco. Su composición proximal muestra niveles moderados de carbohidratos (4,4 g), fibra dietaria (2,5 g) y proteínas (3,3 g), mientras que el contenido lipídico resulta mínimo (0,7 g), características que lo posicionan como un alimento ligero y funcional. Desde el punto de vista vitamínico, destaca su elevado contenido de vitamina K (213 mcg), esencial en procesos de coagulación y salud ósea, acompañado de un significativo aporte de vitamina C (58,1 mg) con función antioxidante e inmunomoduladora, y vitamina A (218 mcg) importante en la salud ocular y epitelial. En menor proporción aporta vitamina B6 (0,1 mg), relacionada con el metabolismo energético y la síntesis de neurotransmisores. En conjunto, estos parámetros nutricionales confirman que el cebollín constituye un recurso hortícola de interés tanto por sus aplicaciones culinarias como por su valor nutracéutico.

2.3.1.9. Cosecha del cebollín

La cosecha es una de las etapas más importantes del cultivo, ya que permite mantener la calidad obtenida en el campo. El cebollín tiene un ciclo productivo de aproximadamente 8 semanas después de la siembra, con cortes programados cada 4 a 5 semanas, tanto para

la producción de hojas como de bulbos. Para garantizar una cosecha continua, se recomienda realizar siembras escalonadas, permitiendo cortes semanales (Peréz, 2023).

El corte en campo debe realizarse cuando el follaje esté seco, iniciando alrededor de los 75 días posteriores a la siembra. El principal indicador de madurez es el diámetro del tallo, que varía entre 0,6 y 1,3 cm según la demanda del mercado. Otro criterio es la altura de la planta, que debe alcanzar entre 13 y 17 cm como mínimo (Barreño y Clavijo, 2006).

2.3.1.10. Manejo post cosecha

El crecimiento de los mercados según Bonilla y los avances tecnológicos han impulsado a los comercializadores de alimentos a incorporar nuevas herramientas que aseguren productos frescos y de alta calidad para el consumidor final. Para preservar las propiedades físicas y organolépticas del cebollín durante su almacenamiento, es fundamental controlar la temperatura. En este contexto, la aplicación de la cadena de frío se convierte en una estrategia esencial para mantener su calidad.

El cebollín es una planta de hoja fina y delicada que se deshidrata rápidamente, por lo que es fundamental mantener una cadena de frío desde el momento del corte hasta su entrega al cliente. Para preservar su frescura y evitar la pérdida de peso, se requiere una cámara de refrigeración en la zona de empaque y clasificación, así como su transporte en camiones refrigerados (Bonilla, 2010).

3. MATERIALES Y MÉTODOS

3.1. Localización

3.1.1. Ubicación Geográfica

El presente trabajo de investigación se realizó en la comunidad Alto Bravo, primera sección del Municipio de Luribay de la Provincia Loayza del Departamento de La Paz, situado a 220 km, a una altitud de 2.150 m s.n.m. Geográficamente está en los paralelos 16º 960' 44''de Latitud Sur y 67º 68' 42''de Longitud Oeste (Eart 2025).

Figura 1. Localización del centro de investigación

Fuente: Elaboración propia

3.1.2. Características Edafoclimáticas

3.1.2.1. Clima

El municipio de Luribay, ubicado en la Cordillera Oriental, presenta un relieve variado que incluye llanuras, mesetas, valles y cordilleras. Sus valles son profundos y encajonados, con pequeñas terrazas aluviales formadas por la erosión fluvial. Además, se observan procesos erosivos como deslizamientos y torrentes de barro (GAM de Luribay, 2015).

En cuanto a su clima, Luribay registra una temperatura promedio de 15 °C. En la comunidad Bravo, las temperaturas oscilan entre una mínima de 10 °C y una máxima de 31 °C. La precipitación anual alcanza un promedio de 458 mm y sigue un régimen bimodal de lluvias, con un primer periodo en febrero, abril y mayo, y un segundo en octubre, noviembre y diciembre (Quisbert, 2022).

3.1.2.2. Suelo

Los suelos de la provincia de Loayza son predominantemente aluviales, con profundidades que van de superficiales a profundas y pendientes de leves a muy pronunciadas. Su estructura es gruesa y, en algunas zonas, permeable, con texturas que varían de franco arenosa a franco arcillosa, acompañadas de grava y piedras. Presentan tonalidades como pardo amarillento, plomizo, rojizo y grisáceo oscuro. La fertilidad es variable: mientras algunas áreas poseen suelos poco profundos y menos productivos, otras cuentan con suelos profundos y altamente fértiles. Según su desarrollo, pueden ser incipientes o poco evolucionados, con una fertilidad natural de moderada a alta y un pH que oscila entre neutro y ligeramente alcalino (Ticona, 2021).

3.1.2.3. Fauna

El Gobierno Autónomo Municipal Luribay (2012), reporta que la vegetación predominante, están constituido por pastos originarias de altura e introducidas, los cuales son de diferentes especies. En los valles interandinos, la vegetación está compuesta por especies de monte espinoso y bosque espinoso.

Cuadro 1. Vegetación predominante.

Nombre Común	Nombre Científico	Piso Ecológico
Algarroba	Prosopis julifora	Valle
Molle	Schinus molle	Valle
Sanu sanu	Ephedra americana	Valle
Sauce	Salix angustifolia	Valle
Canapaco	Sonchus asper	Valle
Caña hueca	Arundo donax	Valle
Chillca	Bacharis lanceolata	Valle y altiplano
Eucalipto	Eucaliptus globulus	Valle y altiplano
Sewenka	Cortaderio sp.	Valle
Verbena	Verbena officinalis	Valle y altiplano
Huma chillca	Senecio sp.	Valle
Chachacoma	Escallonia sp.	Valle y altiplano
K'opi	Kageneckia lanceolada	Valle y altiplano

Fuente: Ticona (2021).

3.2. Materiales

3.2.1. Material de estudio

Los materiales empleados en esta investigación fueron los siguientes:

3.2.2. Material biológico

- Bulbos del cebollín
- Abono de ovino
- Abono bovino

3.2.3. Material de escritorio

- Cuaderno de registro
- Hojas
- Computadora
- Impresora
- Calculadora
- USB

3.2.4. Material de campo

- Flexo
- Picota
- Vernier
- Cinta
- Tablero
- Cámara fotográfica
- Balanza
- Estacas
- Marbetes
- Tijera
- Regla
- Marcadores
- Baldes

3.3. Metodología

3.3.1. Preparación de suelo

El trabajo inició con la preparación de suelo utilizando un tractor. seguidamente, se realizó el arado del terreno, asegurando su nivelación para evitar zonas bajas que puedan acumular agua o elevaciones que dificulten la absorción hídrica de las plantas, garantizando así un drenaje adecuado.

3.3.2. Delimitación de unidades experimentales

La delimitación de la unidad experimental se llevó a cabo con una cinta métrica, permitiendo la distribución precisa de las distancias de plantación, la asignación de las unidades experimentales según los tratamientos se rigió de acuerdo al croquis experimental propuesto en la investigación.

La aplicación de los dos niveles de abono, ovino y bovino, se realizó de manera aleatoria dentro del área de estudio. Asimismo, la selección de los bulbos para la evaluación se efectuó al azar, tomando precauciones para minimizar el efecto de borde en los extremos.

3.3.2.1. Abonamiento del terreno

El abonado del terreno se llevó a cabo manualmente después de la preparación y delimitación de la unidad experimental. Se aplicó abono de ovino y bovino según los niveles de fertilización orgánica establecidos, con dosis de 0,5 kg/m² y 10 kg/m², respectivamente.

3.3.2.2. Sistema de riego

El riego de la parcela se realizó mediante el sistema de inundación por surcos, aplicado antes de la plantación para asegurar una adecuada humedad del suelo y favorecer el prendimiento de los bulbos, el riego en el transcurso del crecimiento se realizó día por medio para que mantenga la humedad y tenga un buen rendimiento. El agua utilizada provino del río, la principal fuente de riego para los cultivos de la zona.

3.3.2.3. Plantación

Se seleccionaron bulbos sanos y de buen tamaño para asegurar un crecimiento uniforme, descartando aquellos con daños o signos de enfermedad. Luego, se trazaron surcos en el

suelo, manteniendo una separación óptima entre ellos. Antes de la plantación, se aplicó riego por surcos para garantizar la humedad adecuada. Posteriormente, los bulbos se distribuyeron en los surcos, respetando una distancia de 20 cm entre ellos para favorecer su desarrollo. Finalmente, se cubrieron parcialmente con tierra, dejando la parte superior expuesta para facilitar su brotación.

3.3.2.4. Manejo del cultivo

En el manejo del cultivo, las actividades realizadas fueron fundamentales:

1. Control de malezas

El desmalezado se realizó cada tres semanas después de la plantación para prevenir la competencia de las malezas con las plántulas en crecimiento. Este procedimiento se llevó a cabo manualmente, empleando un pico para extraer las malezas desde la raíz y garantizar su eliminación efectiva.

2. Aporque

El aporque del cebollín se realizó con el propósito de fortalecer el crecimiento de las plantas y favorecer el desarrollo de las raíces. Este proceso consistió en acumular tierra alrededor de la base de las plántulas, mejorando la estructura del suelo y brindando mayor protección a las plantas. Además, ayudó a conservar la humedad del suelo, generando condiciones más adecuadas para un crecimiento óptimo del cebollín.

3. Toma de datos

La recolección de datos se efectuó semanalmente, iniciando desde el momento en que se observó el prendimiento del cebollín hasta la semana en que se llevó a cabo la cosecha. Este seguimiento continuo permitió monitorear el desarrollo del cultivo en sus distintas etapas, facilitando la obtención de información precisa y oportuna para el análisis de los resultados.

4. Cosecha

La cosecha del cebollín se realizó a los 60 días después de su siembra. El proceso comenzó con el lavado de los cebollines para remover el suelo adherido a las raíces, asegurando así una mejor presentación y frescura del producto. Posteriormente, se llevó a cabo el pesaje y, finalmente, se realizó el amarre de los manojos, dejándolos listos para su comercialización directa.

21

3.3.3. Diseño experimental

En el presente trabajo de investigación se empleó el Diseño Bloques Completamente al Azar con arreglo Factorial y Tratamiento Extra (testigo) (DBCA), con tres bloques, cinco tratamientos y tres repeticiones distribuidos aleatoriamente 80 unidades en cada tratamiento experimentales (González, 1985).

Por lo que el modelo lineal aditivo es el siguiente:

Yijk =
$$\mu + \alpha i + \beta j + \alpha \beta i j + \gamma k + \epsilon i j k$$

Dónde:

Yijk = Una observación cualquiera de la variable de respuesta

 μ = Media poblacional

αi = Efecto del i-ésimo tipo de abono orgánico

βj = Efecto del j-ésimo nivel de abono

 $\alpha\beta$ ij = Efecto de la interacción de tipo de abono y los diferentes niveles

γk = Efecto del k-ésimo bloque

εijk = Error experimental

3.3.4. Factores de estudio

Los factores que fueron:

Factor A: Tipos de Abono

 $a_1 = Ovino$

 $a_2 = Bovino$

Factor B: dosis de abono

 $b_1 = 5 \text{ kg/m}^2$

$$b_2 = 10 \text{ kg/m}^2$$

3.3.4.1. Formulación de tratamientos

 $T_1 = a_1b_1$ (5 kg/m² de Ovino)

 $T_2 = a_1b_2$ (10 kg/m² Bovino)

 $T_3 = a_1b_3$ (5 kg/m² Ovino)

 $T_4 = a_1b_4$ (10 kg/m² Bovino)

 T_5 = testigo

3.3.5. Variables de respuesta

3.3.5.1. Porcentaje de prendimiento (%)

Diez días después de la plantación, se llevó a cabo la evaluación del prendimiento del cebollín en cada bloque. Esta actividad consistió en contar las plántulas que permanecían vivas y bien establecidas, permitiendo calcular el porcentaje de prendimiento. Los datos obtenidos fueron registrados para su posterior análisis, con el objetivo de valorar el éxito de la plantación y las condiciones de adaptación del cultivo en sus primeros días.

3.3.5.2. Altura de planta(cm)

Se seleccionaron al azar 5 plantas por cada unidad experimental, y se midió su altura utilizando un flexómetro, desde la base del tallo hasta el extremo de las hojas más altas, durante todo su ciclo vegetativo. Se tuvo especial cuidado de no dañar las hojas al realizar las mediciones, y los datos se registraron en centímetros.

3.3.5.3. Numero de hojas

El número de hojas se contabilizó en función de los pseudotallos presentes a medida que se desarrollaban, hasta los 70 días posteriores a la plantación del cultivo.

3.3.5.4. Diámetro de tallo (mm)

El diámetro del tallo se realizó con un vernier para tomar los datos exactos en mm de cada tratamiento de la unidad experimental.

23

3.3.5.5. Peso de la cosecha (g)

Una vez cosechado el cebollín, se procedió al pesaje utilizando una balanza digital,

registrando el peso de cada tratamiento por bloque para calcular el rendimiento por metro

cuadrado.

3.3.5.6. Rendimiento por metro cuadrado

El peso total del cebollín se registró tras la cosecha utilizando una balanza analítica, y los

resultados se expresaron en kilogramos por metro cuadrado (kg/m²).

3.3.6. Análisis económico

El análisis de un experimento agrícola es fundamental, ya que el agricultor busca optimizar

el retorno económico más que simplemente aumentar la producción. Esto se debe a que la

rentabilidad depende directamente de la capacidad de justificar la inversión realizada,

especialmente en la implementación de un ambiente controlado. Por ello, se llevó a cabo

un análisis económico considerando tanto el rendimiento como los costos asociados a cada

tratamiento evaluado. A partir de estos datos, se calculó la relación beneficio/costo con el

objetivo de identificar el tratamiento más rentable desde el punto de vista económico (Glenn,

2000).

Ingreso bruto

 $IB = R \times P$

IB = Ingreso Bruto

R = Rendimiento

P = Precio en el Mercado.

Ingreso Neto

IN = IB - CP

IN = Ingreso Neto

IB = Ingreso Bruto

CP = Costos de Producción

Relación Beneficio / Costo

B/C = IB/CP

B/C = Relación Beneficio Costo

IB = Ingreso Bruto

CP = Costos de Producción

Según Glenn (2000). indica que la relación Beneficio Costo se determina de la siguiente forma:

La relación B/C > a 1: Los ingresos económicos son mayores a los gastos de producción, por lo tanto, el cultivo es rentable, el agricultor tiene ingresos.

La relación B/C = a 1: Los ingresos económicos son iguales a los gastos de producción, por lo tanto, el cultivo no es rentable, solo cubre los gastos de producción, por lo tanto, el agricultor no gana ni pierde.

La relación B/C < a 1: No existe beneficio económico, por lo tanto, el cultivo no es rentable, el agricultor pierde.

4. RESULTADOS Y DISCUSIÓN

Una vez realizado el trabajo de campo, se describe los resultados obtenidos en el presente trabajo de investigación de acuerdo a los objetivos planteados por medio de las variables de evaluación se tiene los siguientes resultados:

4.1. Temperatura Máximas y Mínimas

El análisis de los datos climáticos mensuales correspondientes al año 2024 muestra una evolución progresiva en los valores de temperatura máxima (Tmáx.), media (TMED) y mínima (TMIN) desde el invierno hacia la temporada primaveral y de transición hacia el verano.

En el mes de julio, caracterizado por las temperaturas más bajas del periodo, se registró una Tmáx. de 19.33 °C, una TMED de 8.17 °C y una TMIN negativa de -0.59 °C, lo que indica condiciones invernales frías con riesgo de heladas, especialmente en horas nocturnas y en suelos expuestos.

A partir de agosto, se observa un incremento sostenido de todas las variables térmicas. La temperatura media mensual (TMED) asciende de 10.47 °C en agosto a 14.66 °C en diciembre, mientras que la TMIN evoluciona de valores cercanos a cero (0.53 °C en agosto) hasta superar los 7 °C en diciembre. Esto refleja una transición clara de la estación fría hacia condiciones más templadas y estables, propias de la primavera y el inicio del verano.

La temperatura máxima (Tmáx.) también muestra una tendencia ascendente desde 19.33 °C en julio hasta valores superiores a 22 °C en los meses de octubre y noviembre, alcanzando su valor máximo en noviembre (22.38 °C). Posteriormente, en diciembre se mantiene alta, con 21.67 °C, consolidando el patrón de estacionalidad térmica del área de estudio.

Desde el punto de vista agronómico, esta información es esencial para la planificación de siembras, manejo del riego y elección de cultivos o variedades, permitiendo identificar ventanas de menor riesgo de heladas y periodos con temperaturas óptimas para el desarrollo vegetativo y reproductivo de especies agrícolas adaptadas a la región. (Mmaya, 2024).

En la Figura 2 se muestran de manera detallada los siguientes parámetros:

25 22,38 22,01 21,67 21,06 20,42 19,33 20 14,48 14,66 Temperatura (°C) 13,68 12.11 10,47 9,17 10 7,65 6,57 5,36 3,15 5 0,53 -0,99 0 Julio **Noviembre Diciembre** Agosto Septiembre Octubre -5 **─**Tmedia **─**Tmin

Figura 2. Temperatura del municipio de Luribay

Fuente: Mmaya (2024)

4.2. Porcentaje de prendimiento

El porcentaje de germinación se determinó a partir de la recopilación de datos específicos, los cuales se presentan en el Cuadro 3:

Cuadro 2. Prendimiento del cebollín

Variedad	Prendimiento(%)		Días de
			prendimiento
	T1	99%	10 días
mún	T2	95%	10 días
Cebollín común	ТЗ	98%	10 días
Cebo	T4	99%	10 días
	T5	88%	11 días

Los tratamientos con mayores porcentajes de prendimiento fueron el Tratamiento 1 y el Tratamiento 4, ambos con un 99%, seguidos por el Tratamiento 3 con un 98%. El Tratamiento 2 alcanzó un 95% de prendimiento, mientras que el Tratamiento 5 presentó el menor porcentaje, con un 88%.

El tiempo de prendimiento fue de 10 días para los Tratamientos 1, 2, 3, 4, que el Tratamiento 5 presentó un tiempo de prendimiento de 11 días.

Según Alfaro (2023) el porcentaje de prendimiento en este estudio reflejó la cantidad de plántulas establecidas por parcela. Esta evaluación se realizó 10 días después del trasplante, contabilizando el total de plantas prendidas por tratamiento para luego calcular su respectivo porcentaje.

4.2.1. Altura de planta

El Cuadro 3, muestra el análisis de varianza para la altura de la planta a los 60 días después de la plantación. Los resultados revelan que no hay diferencias significativas entre los testigos, lo que indica que este factor no afectó la altura de la planta. De manera similar, el abono no tuvo un impacto significativo en esta variable, evidenciando que su aplicación no influyó en el crecimiento de la planta. Asimismo, la dosis aplicada tampoco presentó efectos significativos, lo que sugiere que no hubo variaciones en la altura en función de este factor. En cuanto a la interacción entre el abono y la dosis, no se observaron diferencias significativas, lo que indica la ausencia de una relación entre ambos factores en la altura de la planta. Finalmente, el coeficiente de variación obtenido fue del 11.45%, un valor que se encuentra dentro del rango aceptable de confiabilidad.

Cuadro 3. Análisis de varianza de altura de planta

FV	GI	SC	СМ	F value	Pr(>F)
Bloque	2	164	820	2.604	0.135
Testigo vs factorial	1	715	715	2.269	0.170
Abono	1	273	273	0.866	0.379
Dosis	1	290	290	0.092	0.769
Abono:Dosis	1	310	310	0.985	0.350
Error	8	2521	315		
Total	14	4273			
CV = 11,45 %					

Según el Cuadro 4, aunque se observaron diferencias en la altura promedio del cebollín entre los tratamientos con abonos orgánicos, estas diferencias no fueron estadísticamente significativas. El abono de ovino presentó la mayor altura media (57,00 cm), seguido del abono de bovino (54,00 cm) y el testigo sin fertilización (50,00 cm). A pesar de la tendencia favorable del abono de ovino, los resultados indican que el efecto de los distintos tipos de abono sobre la altura de planta no fue determinante en las condiciones evaluadas.

La absorción de nutrientes (macro y micronutrientes), al respecto Clemson (2004) indica, en su trabajo de investigación una ventaja de utilizar abono orgánico a base de limonita puede llegar a proveer una gran variedad de micronutrientes como hierro y zinc que por lo general no son encontrados en los fertilizantes sintéticos, además que ayudan a mejorar la estructura del suelo al no tener compuestos dañinos para el mismo.

Cuadro 4. Promedio de la altura de plantas para distintos abonos en el cebollín

Abono	Media (cm)
Ovino	57. 00
Bovino	54.00
Testigo	50.00

De acuerdo con el Cuadro 5, la altura promedio de las plantas de cebollín varió en función de las dosis de abono aplicadas. El tratamiento con abono de ovino mostró la mayor altura, con un promedio de 56,00 cm, seguido por el abono de bovino con 55,00 cm. El tratamiento testigo, sin aplicación de abono, presentó la menor altura con 50,00 cm. Estos resultados sugieren que la aplicación de abonos orgánicos contribuye positivamente al crecimiento vegetativo del cebollín, resaltando la mayor eficacia del abono de ovino.

Cuadro 5. Análisis comparativo de la altura de plantas de cebollín según dosis

Abono	Media (cm)
Ovino	56. 00
Bovino	55. 00
Testigo	50.00

Según en contraste con tu estudio, que no mostró diferencias significativas en la altura del cebollín entre las dosis de abono orgánico aplicadas, la investigación de Castro (2021), demostró que factores como la densidad de siembra y el tipo de ambiente (protegido o campo abierto) sí tuvieron un efecto significativo en esta variable.

El Cuadro 6, Los resultados reflejados en el cuadro muestran variaciones en la respuesta del cultivo según el tipo y la dosis de abono aplicado. El tratamiento con abono de ovino a 5 kg presentó el mayor valor promedio (59,30 cm), seguido por el abono de bovino a 10 kg (55,30 cm), y ovino a 10 kg (55,10 cm). El abono de bovino a 5 kg registró un valor promedio de 53,13 cm, mientras que el testigo sin aplicación de abono obtuvo el menor valor (50,30 cm). Sin embargo, estas diferencias no fueron estadísticamente significativas, lo que indica que, bajo las condiciones del experimento, el tipo y la dosis de abono no influyeron de manera determinante en la variable evaluada.

Cuadro 6. Comparación de medias del efecto factorial de tipo y dosis de abono sobre el cultivo

Nivel	Media
Ovino 5 kg.	59,3
Bovino 10 kg.	55,3
Ovino 10 kg.	55,1
Bovino 5 kg.	53,1
Testigo.	50,3

En el estudio, no se encontraron diferencias significativas entre las dosis de abono (ovino y bovino) aplicadas. En contraste, Alfaro (2023) reportó que el uso de 2 kg/m² de estiércol de ovino, combinado con una distancia de plantación de 25 x 25 cm, sí influyó significativamente en el desarrollo y rendimiento del cebollín, mejorando la altura de planta, el diámetro de tallo y el peso a la cosecha.

4.3. Numero de hojas

El análisis de varianza para número de hojas en el cultivo de cebollín se muestra en el Cuadro 7, a un nivel de significancia del 5% se establece que para número de hojas existe diferencias significativas entre bloques, así mismo que tanto testigo como tanto abono y dosis son altamente significativos es decir en caso colocar diferentes abonos orgánicos influyeron positivamente en número de hojas, con respecto al testigo de la misma manera marca la deferencia Sin embargo en el caso de la interacción de dosis no hay una diferencia significativa. Así mismo se puede señalar el valor de coeficiente de variación es de 26, 26% por lo cual entendemos que los datos son confiables siendo este inferior al 30%

Cuadro 7. Análisis de varianza de número de hojas

FV	GI	SC	CM	F value	Pr(>F)
Bloque	2	316	158	4. 838	0. 041
Testigo vs factorial	1	589	589	18. 025	0. 002
Abono	1	139	139	4. 271	0. 072
Dosis	1	526	526	1. 610	0. 240
Abono: Dosis	1	218	218	6. 692	0. 032
Error	8	261	327		
Total	14	2049			
CV = 26.26 %					

^{*}p < 0.5; ** p < 0.01

El Cuadro 8, revela la formación de dos grupos estadísticamente diferenciados en función del tipo de abonamiento. El primer grupo, integrado por los tratamientos con abono orgánico de ovino y bovino, presentó promedios superiores de hojas por planta, alcanzando 148 hojas/macollo de cebollín y 127 hojas/macollo de cebollín, respectivamente. Por otro lado, el segundo grupo, correspondiente al testigo sin aplicación de abono, registró el valor más bajo con 88 hojas/macollo de cebollín

Cuadro 8. Promedio de numero de hojas de distintos abonos en el cebollín

Abono	Media
Ovino	148. 00
Bovino	127. 00
Testigo	88. 00

En contraste, el estudio realizado por Castro (2021), los resultados mostraron que el número de hojas fue significativamente mayor en ambientes protegidos y con una densidad de siembra de 80 plantas/m². Esto indica que factores como la densidad de siembra y el tipo de ambiente pueden influir significativamente en el desarrollo del cebollín.

El cuadro 9 se identificó tres grupos significativamente diferentes en función del tipo y dosis de abono aplicado. El estiércol de ovino presenta la mayor media de 168 hojas/planta y se ubicó en el primer grupo destacando como el tratamiento más efectivo para estimular el desarrollo foliar del cebollín, en el segundo grupo de dosis de abono de bovino con 133 hojas y ovino con 128 hojas mostrando efectos positivos, aunque inferiores al tratamiento óptimo. El bovino 120 hojas se posicionó en un grupo intermedio, mientras que el testigo

sin abono presentó la media más baja de 88 hojas/planta, siendo clasificado en el tercer grupo.

Cuadro 9. Promedio de número de hojas de la interacción

DOSIS DE ABONO	MEDIA (cm)
Ovino 10 kg.	168. 00
Bovino 5 kg.	133.00
Ovino 5 kg.	128.00
Bovino 10 kg.	120.00
Testigo.Testigo.	88.00

Según Apaza (2025), la aplicación de fertilizantes orgánicos mejora el crecimiento vegetativo del cebollín, en comparación con los tratamientos testigo. Sin embargo, difieren en cuanto al tipo de abono más efectivo, lo cual puede atribuirse a factores como el origen de los abonos, las condiciones edafoclimáticas y el manejo agronómico

4.4. Diámetro de tallo

El análisis de varianza para el diámetro de tallo en el cultivo de cebollín el cuadro 10, realizado al nivel de significancia del 5%, indica que no se encontraron diferencias estadísticamente significativas entre los tratamientos evaluados. Ni el bloque, ni el testigo, ni los factores de abono, dosis o su interacción (abono\dosis) no mostraron efectos significativos sobre esta variable. Esto sugiere que la aplicación de distintos tipos y cantidades de abonos orgánicos no tuvo un impacto determinante en el diámetro del tallo del cebollín. Además, el coeficiente de variación fue de 9,58%, lo cual indica que los datos obtenidos son estadísticamente confiables, al estar muy por debajo del umbral aceptable

Cuadro 10. Análisis de varianza de diámetro de tallo

FV	Df	SC	CM	F value	Pr(>F)
Bloque	2	2. 356	1. 178	0. 604	0. 570
Testigo	1	1. 768	1. 768	0. 907	0. 369
Abono	1	0. 521	0. 520	0. 267	0.619
Dosis	1	0. 141	0. 140	0. 072	0. 795
Abono: Dosis	1	0. 101	0. 100	0.052	0.826
Error	8	15. 597	1. 949		
Total	14	20, 484			
CV = 0 E9 %					

CV = 9.58 % *p < 0.5; ** p < 0.01

A diferencia de los resultados obtenidos donde no se observaron diferencias significativas en el diámetro del tallo del cebollín con la aplicación de distintos abonos orgánicos Alfaro (2023), reportó que el uso de compost de lombriz en combinación con estiércol de ovino sí generó diferencias estadísticamente significativas en esta variable. En su estudio, los tratamientos con compost mejoraron el engrosamiento del tallo en comparación con el testigo, atribuyéndose este efecto a una mayor disponibilidad de nutrientes y mejor estructura del suelo, esta diferencia entre estudios puede deberse a factores edafoclimáticos, al tipo de abono utilizado o al manejo agronómico aplicado, resaltando así la importancia de contextualizar los resultados en función del entorno experimental.

Según los datos presentados en el Cuadro 11, se observaron ligeras variaciones en la media de la variable evaluada en función del tipo de abono aplicado. El tratamiento con abono de ovino registró el valor promedio más alto con 13,00 mm, seguido por el abono de bovino con 12,00 mm, y el testigo mostrando 11,00 mm, a pesar de esta tendencia ascendente en los tratamientos con abonos orgánicos, el análisis estadístico indicó que las diferencias no fueron significativas al nivel del 5 %, lo que sugiere que, en las condiciones específicas del presente estudio, el tipo de abono no ejerció una influencia estadísticamente comprobable sobre la variable analizada. Esta ausencia de significancia podría atribuirse a la homogeneidad de la respuesta del cultivo o a factores externos como condiciones edafoclimáticas uniformes durante el experimento.

Cuadro 11. El diámetro de tallo del factor abono

Abono	Media (mm)
Ovino	13. 00
Bovino	12. 00
Testigo	11. 00

Según Pérez (2023), utilizando la prueba de Duncan al 5%, se determinó que el tratamiento con Biocompost obtuvo el mejor resultado en cuanto al diámetro del tallo del cebollín, alcanzando un promedio de 12,80 mm. Este valor fue superior al del tratamiento testigo, lo que indica que la aplicación de este abono orgánico influyó positivamente en el desarrollo del tallo.

El cuadro 12, se observaron diferencias significativas entre las dosis de abono evaluadas. El tratamiento con 10 kg presentó el mayor promedio de diámetro de tallo con 12,90 mm, seguido por la dosis de 5 kg con 12,68 mm, ambos agrupados en el primer grupo. En cambio, el testigo, con un promedio de 11,93 mm, se ubicó en el segundo grupo, lo que indica un rendimiento significativamente inferior. Esta diferencia en los grupos se atribuye a la variación en la concentración de nutrientes aportada por las distintas dosis de abono orgánico, lo que influyó positivamente en el desarrollo del tallo del cebollín.

Cuadro 12. Diámetro de tallo de factor dosis

Nivel	Media (mm)
10 kg	12. 90
5 kg	12. 68
Testigo	11. 93

Aunque no se muestran letras de agrupación a la tendencia de los valores sugiere que la aplicación de abonos orgánicos, especialmente de ovino a mayor dosis, mejora el grosor del tallo del cebollín. Estos resultados resaltan la importancia del tipo y cantidad de abono aplicado, siendo el abono ovino a 10 kg el más efectivo en esta variable.

El cuadro 13, se observaron variaciones en la media de la variable evaluada en función de la combinación de tipo y dosis de abono orgánico. El tratamiento con abono de ovino a 10 kg obtuvo el valor promedio más alto (13,20 mm), seguido por ovino 5 kg (12,80 mm), bovino 10 kg (12,60 mm) y bovino 5 kg (12,56 mm). El testigo, sin aplicación de fertilizante, presentó el menor valor (11,93). Si bien se evidencia una tendencia creciente en los tratamientos fertilizados, principalmente con abono de ovino, las diferencias observadas no fueron estadísticamente significativas al nivel del 5 %, lo que indica que, bajo las condiciones experimentales evaluadas, el efecto combinado del tipo y dosis de abono no generó un impacto significativo sobre la variable medida. Esta ausencia de significancia puede atribuirse a una respuesta uniforme del cultivo o a la limitada sensibilidad de la variable ante los tratamientos aplicados.

Cuadro 13. Diámetro de tallo de la dosis de abono

Abono y nivel	Media (mm)
Ovino 10 kg.	13. 20
Ovino 5 kg.	12. 80
Bovino 10 kg.	12. 60
Bovino 5 kg.	12. 56
Testigo.Testigo.	11. 93

4.5. Peso por metro cuadrado

Muestra los resultados del análisis de varianza en el Cuadro 15, para la variable por "metro cuadrado". El factor bloque es altamente significativo (0.003), lo que indica una considerable variabilidad entre los bloques experimentales. Asimismo, el factor testigo también muestra un efecto significativo (0.017), sugiriendo que su presencia tiene una influencia importante en la variable medida. Sin embargo, los factores abono (0.429), dosis (0.749) y la interacción abono: dosis (0.555) no presentan efectos significativos, lo que indica que estos factores no influyen de manera relevante en la variable medida por metro cuadrado.

Cuadro 14. Análisis de varianza del peso de metro cuadrado

FV	GI	SC	СМ	F value	Pr(>F)
Bloque	2	332	166	25. 350	0. 003
Testigo vs factorial	1	586	586	8. 944	0. 017
Abono	1	454	454	0. 692	0. 429
Dosis	1	72	72	0. 110	0. 749
Abono: Dosis	1	248	248	0. 378	0. 555
Error	8	524	656		
Total	14	2216			
CV = 59.93 %					

^{*} p < 0.05

Según Royman (2016), el análisis de varianza (ANVA) para la variable peso por unidad experimental evidenció que la pendiente del terreno tuvo un efecto significativo en el rendimiento, mientras que las variedades evaluadas no presentaron diferencias estadísticas, lo que indica un comportamiento similar entre ellas en cuanto al peso

cosechado. El coeficiente de variación del 5,3 % refleja la confiabilidad de los datos y un buen manejo experimental.

En el Cuadro 15, se observa el efecto del tipo de abono sobre la variable evaluada. El tratamiento con abono de ovino presentó la media más alta (110,76), seguido por el abono de bovino (98,46), mientras que el testigo, sin aplicación de fertilizante, obtuvo el menor valor promedio (55,18). A pesar de que los tratamientos con abonos orgánicos mostraron una tendencia positiva en comparación con el testigo, el análisis estadístico reveló que las diferencias entre tratamientos no fueron significativas al nivel del 5 %. Esto indica que, bajo las condiciones del presente estudio, el tipo de abono no ejerció un efecto estadísticamente comprobable sobre la variable analizada. La falta de significancia puede deberse a la variabilidad experimental, a la limitada sensibilidad de la variable frente al factor evaluado, o a la homogeneidad en la respuesta del cultivo ante los tratamientos aplicados.

Cuadro 15. Peso de metro cuadrado del factor abono

Abono	Media (kg/m²)
Ovino	110. 00
Bovino	98. 00
Testigo	55. 00

Los resultados de la prueba de Duncan evidencian diferencias significativas en el rendimiento entre los bloques, lo que sugiere que factores específicos como la pendiente del terreno o el manejo aplicado en cada bloque influyeron directamente en el peso cosechado por unidad experimental (Royman, 2016).

El Cuadro 16, presenta los resultados de la prueba de Duncan al 5% para el factor dosis, indicando que no existen diferencias significativas entre las dosis de 10 kg y 5 kg en cuanto al peso por metro cuadrado. Sin embargo, ambas dosis muestran un impacto significativamente mayor en comparación con el Testigo.

Cuadro 16. El peso de metro cuadrado del factor dosis

Nivel	Media
10 kg	107. 06
5 kg	102. 16
Testigo	55. 18

El Cuadro 17, presenta los resultados de la prueba de Duncan al 5% para el factor abono y dosis, mostrando que las combinaciones de Bovino 10 kg y Bovino 5 kg no presentan diferencias significativas entre sí, pero ambas tienen un impacto superior sobre el peso por metro cuadrado en comparación con el Testigo, que se clasifica en un grupo distinto. De manera similar, las combinaciones de Ovino 10 kg y Ovino 5 kg también superan al Testigo en cuanto a su impacto en esta variable, pero no muestran diferencias significativas entre ellas ni en comparación con los tratamientos de Bovino.

Cuadro 17. Peso de metro cuadrado de la interacción de dosis de abono

Nivel de abono	Media
Bovino 10 kg	13. 20
Bovino 5 kg	12. 80
Ovino 10 kg	12. 60
Oovino 5 kg	12. 56
Testigo.Testigo	11. 93

4.6. Rendimiento por Parcela

El Cuadro 18, muestra que, según el análisis de varianza realizado para el rendimiento por parcela, solo el factor bloque presenta una diferencia significativa, lo que sugiere que existe una considerable variabilidad entre los bloques experimentales. Por otro lado, los factores testigo, abono, dosis y la interacción abono: dosis no muestran efectos significativos, lo que indica que estos factores no tienen un impacto relevante en el rendimiento por parcela.

Los tratamientos aplicados no generaron diferencias estadísticas en el rendimiento, lo que indica un comportamiento similar bajo las condiciones del ensayo. La homogeneidad de los datos confirma la consistencia y confiabilidad del experimento (Espinoza, 2016).

FV F value Df SC CM Pr(>F) Bloque 2 336 168 11.470 0.004 **Testigo** 1 551 551 3.755 0.088 Abono 1 419 419 0.029 0.869 Dosis 904 904 0.616 0.455 Abono: Dosis 1 132 132 0.902 0.370 Frror 8 117 146

Cuadro 18. Análisis de varianza de rendimiento por parcela

14

Total

Los resultados del Cuadro 19, muestran el comportamiento de la variable evaluada en función del tipo de abono orgánico aplicado. El tratamiento con abono de ovino presentó el valor promedio más elevado (304,98), seguido del abono de bovino (292,67), mientras que el testigo, sin aplicación de abono, registró el menor valor (147,43). Si bien los datos evidencian una tendencia favorable en los tratamientos con abonos orgánicos respecto al testigo, el análisis estadístico indicó que las diferencias observadas no fueron significativas al nivel del 5 %. Esto sugiere que, en las condiciones experimentales evaluadas, el tipo de abono no generó un efecto estadísticamente comprobable sobre la variable analizada, lo que puede atribuirse a la variabilidad intrínseca de los datos o a una respuesta fisiológica uniforme del cultivo frente a los tratamientos.

Cuadro 19. Promedio del rendimiento de la parcela del factor abono

Abonos	Media
Ovino	304. 98
Bovino	292. 67
Testigo	147. 43

Priorizar la siembra del cultivo en futuras campañas, especialmente en zonas con condiciones agroecológicas similares, con el fin de mejorar la productividad del cultivo. Asimismo, es conveniente continuar evaluando otras variedades que puedan superar estos rendimiento (Casas, 2011).

Cv = 72.63%

^{**} p < 0.01

El Cuadro 20, muestra que la dosis de 10 kg obtuvo la mayor media (326,37), seguida por 5 kg (271,28), y el testigo el menor valor (147,43). Aunque se observa una tendencia favorable con el incremento de la dosis, las diferencias no fueron estadísticamente significativas (p>0,05), lo que indica que la dosis de abono no influyó de forma significativa en la variable evaluada bajo las condiciones del experimento.

Cuadro 20. Promedio del rendimiento por parcela del factor dosis

Nivel	Media
10 kg	326. 37
5 kg	271. 28
Testigo	147. 43

Según el Cuadro 21, tratamiento ovino 10 kg registró la mayor media (365,74), seguido por bovino 5 kg (298,33), bovino 10 kg (287,01) y ovino 5 kg (243,23), mientras que el testigo presentó el menor valor (147,43). A pesar de la tendencia favorable con los abonos orgánicos, las diferencias no fueron estadísticamente significativas (p>0,05), lo que indica que la combinación de tipo y dosis de abono no influyó significativamente en la variable evaluada bajo las condiciones del experimento.

Cuadro 21. Promedio de rendimiento de la parcela de dosis y abono

Nivel	Media
Ovino 10 kg.	365. 74
Bovino 5 kg.	298. 33
Bovino 10 kg.	287. 01
Ovino 5 kg.	243. 23
Testigo.Testigo.	147. 43

4.7. Análisis Económico

El análisis económico se realizó con los datos obtenidos en parcela experimental del campo con el fin de determinar el abono y dosis, tienen mejor comportamiento agronómico y mejor rendimiento para la producción. Por lo general, el objetivo del agricultor está orientado en obtener el mayor beneficio económico con el cultivo que trabaje y a la vez obtener los

mayores rendimientos, por lo cual en este sentido el análisis de costos de producción nos orienta a elegir las mejores resultados y mejores tipos de abonos los cuales hayan alcanzado los mayores rendimientos como así también se obtengan más altos ingresos económicos.

Cuadro 22. Beneficio y costos

Tratamiento	Ingreso bruto (Bs)	Costo de producción total (Bs)	Ingreso neto (Bs)	B/C (BS)	
T1	239,4	192,04	47,36	1,24	
T2	231	198,88	32,12	1,3	
Т3	229,6	192,04	37,56	1,2	
T4	234,5	198,88	35,62	1,29	
T5	196	180,04	15,96	1,1	

Fuente: elaboración propia (2025)

En el Cuadro 23, El análisis económico de los distintos tratamientos evidencia variabilidad en la rentabilidad del cultivo de cebollín (*Allium schoenoprasum* L.), influenciada por el tipo y dosis de abono aplicado. La evaluación considera el ingreso bruto, el costo total de producción, el ingreso neto y la relación beneficio/costo (B/C), indicadores fundamentales para estimar la viabilidad económica de cada alternativa agronómica, el tratamiento T₂ presentó la relación B/C más alta 1,30 bs, lo cual indica que por cada boliviano invertido se obtiene un retorno de 0,30 bolivianos este resultado evidencia una alta eficiencia económica al lograr un adecuado equilibrio entre costo operativo y rendimiento económico.

El tratamiento T₄ mostrando un comportamiento económico comparable al T₂, con capacidad de 1. 29 bs lo que indica que por cada boliviano invertido se obtiene 0. 29 bs para cubrir los costos de producción y generar un margen de utilidad satisfactorio.

El tratamiento T₁ logró el mayor ingreso neto absoluto 47,36 Bs, aunque con 1,24 bs y por cada boliviano invertido se obtiene 0. 24 bs ligeramente inferior a T₂ y T₄. Esto sugiere una buena rentabilidad en términos absolutos, aunque con una eficiencia relativa menor en cuanto al uso de los recursos invertidos.

Los tratamientos T₃ con capacidad de 1,20 bs y T₅ 1,10 bs mostraron menor rentabilidad relativa, especialmente T₅, que alcanzó el menor ingreso neto 15,96 Bs y más baja. Estos valores reflejan una menor eficiencia técnica y económica, y una rentabilidad marginal, que puede limitar su adopción a nivel productivo.

En términos generales, los tratamientos T_2 y T_4 se consolidan como los más eficientes y sostenibles desde el punto de vista económico, lo que los posiciona como las mejores alternativas para ser recomendadas en la producción comercial de cebollín bajo condiciones similares a las del presente estudio.

5. CONCLUSIONES

- La hipótesis nula (H0), que planteaba que no existirían diferencias en la producción con la aplicación de abonos ovino y bovino, fue parcialmente aceptada, dado que no se hallaron diferencias estadísticas significativas en la mayoría de las variables evaluadas.
- Se determinó que tanto el estiércol de ovino como el de bovino favorecieron el desarrollo vegetativo del cebollín, mostrando tendencias positivas en variables como altura de planta y número de hojas. Sin embargo, los análisis estadísticos no evidenciaron diferencias significativas entre los tipos ni las dosis de abono, lo que indica que ambos insumos poseen un comportamiento agronómico similar bajo las condiciones del ensayo.
- Los tratamientos con abonos orgánicos superaron al testigo en peso por metro cuadrado y rendimiento por parcela. No obstante, la variabilidad entre bloques influyó en los resultados, lo que demuestra que factores edafoclimáticos y de manejo condicionan la productividad. El estiércol de ovino presentó una ligera ventaja en el desarrollo vegetativo, consolidándose como una alternativa viable para optimizar la producción.
- Asimismo, si bien los tratamientos fertilizados con estiércol, especialmente el de ovino a 100 t/ha, mostraron una ligera mejora en ciertas variables morfológicas, estos incrementos no fueron significativos en términos estadísticos. El análisis económico indicó que el tratamiento T2 presentó la mejor relación beneficio/costo (1,30 Bs), lo que lo posiciona como el más rentable dentro de los evaluados.

6. RECOMENDACIONES

Con base en los resultados obtenidos en el presente trabajo de investigación, se sugiere:

- Se recomienda que futuros trabajos de investigación sobre la producción de cebollín contemplen variables agronómicas adicionales como el manejo hídrico, la fertilidad del suelo, la actividad microbiológica y condiciones fisiológicas del cultivo, con el fin de identificar factores que influyan de manera más determinante en el rendimiento.
- Explorar el uso de otras fuentes de fertilización orgánica como compost, humus de lombriz y biofermentos, así como la integración de bioestimulantes naturales, los cuales podrían potenciar el desarrollo morfofisiológico del cultivo y mejorar la calidad del producto cosechado
- Asimismo, se sugiere la evaluación de otros insumos orgánicos o biofertilizantes con mayor capacidad de liberación de nutrientes, así como la implementación de análisis de suelos previos que permitan una dosificación más precisa de los insumos aplicados. Es fundamental optimizar el diseño experimental considerando un mayor número de repeticiones y condiciones controladas que reduzcan la variabilidad externa, con el objetivo de obtener datos más robustos y extrapolables a sistemas productivos a escala comercial.

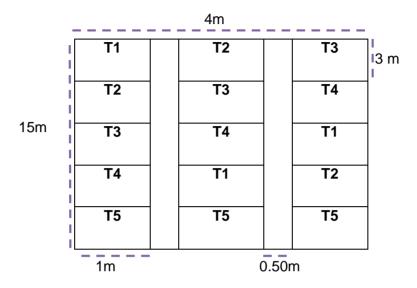
7. REFERENCIAS BIBLIOGRAFICAS

- Alforo, N. 2023. Producción de cebollín (*Allium Schoenoprasum* L.) bajo diferentes niveles de estiércol de ovino y distancias de plantación en el Centro Experimental Cota Cota. Tesis Ing. Agr. La Paz- Bolivia Universidad Mayor de San Andrés. 85 p. Disponible en https://repositorio.umsa.bo/bitstream/handle/123456789/33010/TD-3172.pdf?sequence=1&isAllowed=y
- Arias, G. A., F. 2012. Evaluacion Agronómica del cultivo de cebollín (*Allium schoenoprasum*) con dos tipos de fertilizantes y tres densidades de siuembra, en la parroquia puembo cantón Quito. Tesis Ing. Agr. Guaranda- Ecuador Universidad Estatal de Bolivar Facultad de Ciencias Agropecuarias Recursos Naturales y del Ambiente Escuela de Ingenieria 88 p. Disponible en https://www.yumpu.com/es/document/read/14253886/056-agpdf-universidad-estatal-de-bolivar
- Bonilla, C. P., Y. 2010. Produccion y Manejo Poscosecha Colombia-Bogota, 89 p. Disponible en https://repository.agrosavia.co/handle/20.500.12324/32808
- Bonilla, C. V. M. R. P. 2011. Cebollín (*Allium schoenoprasum* L.). Colombia- Bogota, Colombia, Universidad Nacional de Colombia. 21 p. Disponible en https://repository.agrosavia.co/handle/20.500.12324/1979
- Casas, J. 2011. Evaluación de rendimiento de dos variedades de cebolla (Allium cepa L.) a diferentes niveles de abono orgánico bajo riego por surco en la Localidad de Ajlla Municipio de Achacachi Tesis Ing. Agr. La Paz Bolivia. Universidad Mayor de San Andrés.

 Disponible en https://repositorio.umsa.bo/xmlui/bitstream/handle/123456789/7468/T-1584.pdf?sequence=1&isAllowed=y
- Castro, A. 2021. Evaluación de tres densidades de siembra del cultivo de cebollín (*Allium schoenoprasum* L.) bajo ambiente protegido y en condiciones de campo abierto

- Mecapaca La Paz. Tesis Ign. Agr. La Paz Bolivia. Universidad Mayor de San Andrés. 115 p. Disponible en
- https://repositorio.umsa.bo/bitstream/handle/123456789/25690/T2843.pdf?sequence=3&is Allowed=y
- Cebollina. Cebollina. Disponible en
- https://www.jica.go.jp/Resource/project/panama/0603268/materials/pdf/02_gardening/02_Cebollina.pdf
- Condori, K. 2024. Evaluación del efecto del ecolimo bajo diferentes niveles de aplicación, en dos variedades de cebolla (*Allium cepa L.*) en el Centro Experimental de Cota Cota. Tesis Ing. Agr. La Paz Bolivia. Univerrsidad Mayor de San Andres. 92 p. Disponible en
- https://repositorio.umsa.bo/xmlui/bitstream/handle/123456789/35783/T3257.pdf?sequence =1&isAllowed=y
- Darwin, C. 2024. (Galapagos Species Database, Allium schoenoprasum", dataZone.).

 Disponible en https://datazone.darwinfoundation.org/es/checklist/?species=1902
- Espinoza, J. 2016. Analisis de la eficiencia productiva de cebolla (*Allium cepa*), bajo laminas de riego, fertirrigacion y compost, municipio laja, comunidad sullcataca alta. Tesis Ing. Agr. La Paz Bolivia. Universidad Mayor de San Andres. 233 p. Disponible en https://repositorio.umsa.bo/xmlui/bitstream/handle/123456789/10543/TM-2357.pdf?sequence=3&isAllowed=y
- Fernandez, V. 2003. Estudio de Domesticacion de Especies Medicinales Aromaticas Nativas, Ficha de cultivo de Especies Aromaticas Tradicionales. Ficha de cultivo de Especies Aromaticas Tradicionales. 259.
- Hernández, F. 2015. Asistencia Tecnica Agricola. informacion generada para los agricultores. Disponible en
- https://www.agro-tecnologia-tropical.com/el cultivo del ceboll n.html


- INIAF. 2014. Memoria del primer congreso Boliviano de Horticultura. INIAF ed. Cochabamba Bolivia, INIAF. 184 p.
- Leyva, L. 2019. Cebollin Obtenido de Tuberculo. revista Disponible en https://www.tuberculos.org/bulbos/cebollin/
- Michelin. 2021. Qué es el cebollín: sus propiedades y usos en la cocina. Fine Dining Lovers.

 Disponible en https://www.finedininglovers.com/es/noticia/que-es-el-cebollino
- Peréz, A. 2023. Evaluación del comportamiento agronómico del cultivo de cebollín (*Allium schoenoprasum*) con la aplicación de abonos orgánicos en el recinto santa rosa del cantón pangua. Tesis Ing. Agr. Maná-Ecuador. Universidad Técnica de Cotopaxi Extensión la Maná. 74 p. Disponible en
- https://repositorio.utc.edu.ec/server/api/core/bitstreams/e97504ae-0a9b-410c-99c10e5223362431/content
- Pierre, J. 2022. El cebollin en productos innovadores. Bogotá. Facultad de Ciencias Administrativas y Afines Programa de Grastronomia 47 p.
- Quezada, M. 2011. Evaluación del efecto de los diferentes niveles de materia orgánica en el comportamiento agronómico de dos variedades de cebolla (*Allium cepa* L.) en la comunidad de Khasa Achuta del Departamento de La Paz. Tesis Ing. Agr. La Paz Bolivia. Universidad Mayor de San Andres. 85 p. Disponible en
- https://repositorio.umsa.bo/bitstream/handle/123456789/12677/T1615.pdf?sequence=1&is Allowed=y
- Quisbert, L. 2022. Centro de enoturismo en Luribay. Tesis Ing. Agr. La Paz- Bolivia. Universidad Mayor de San Andres. 138 p.
- Quispe, J. 2019. Comportamiento agronomico de tres variedades de espinaca (Spinacea oleracea L.) en la comunidad anquioma del municipio de luribay, provincia loayza del departamento de la paz. Tesis Ing. Agr. La Paz Bolivia. Universidad Mayor de San Andres. 97 p. Disponible en
- https://repositorio.umsa.bo/bitstream/handle/123456789/24913/TS2781.pdf?sequence=1&isAllowed=y

- Popescu, V., Tamas, Glendiu y Benedec. 2013. Chemical Constituents of Three Allium Species from Romania. Molescules. 14.
- Ramos, D. 2014. Generalidades de los abonos orgánicos: Importancia del Bocashi como alternativa nutricional para suelos y plantas. Cultivos Tropicales. Disponible en http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0258-59362014000400007
- Royman, P. 2016. Comportamiento agronómico de tres variedades de cebolla (*Allium cepa I.*) bajo tres densidades de siembra en almácigo en la estación Experimental de Patacamaya. Tesis Ing. Agr. La Paz Bolivia Universidad Mayor de San Andres. 96 p. Disponible en https://repositorio.umsa.bo/bitstream/handle/123456789/10332/T-2317.pdf?sequence=3&isAllowed=y
- Ticona, R. 2021. Efecto del bio-pesticida casera en el control del gusano cogollero (Spodoptera frugiperda) del cultivo de maiz (zea mays I.) en la comunidad Bravo del municipio de Luribay. Tesis Ing. Agr. La Paz Bolivia. Universidad Mayor de San Andrés Facultad e Agronomía. licienciatura p. Disponible en https://repositorio.umsa.bo/bitstream/handle/123456789/27702/TS-2982.pdf?sequence=1&isAllowed=y
- Villegas, A., Briseño, Sosa. 2013. Guía para el cultivo de Cebollín. CIB. Disponible en https://openjicareport.jica.go.jp/pdf/11814050_01.pdf

8. ANEXO

Anexo 1. Croquis del experimento diseño de bloques completamente al azar

Datos del croquis

- Área total= 60 m²
- Área de unidad experimental =3m
- Área total de unidades experimentales = 15
- Área del tratamiento = 9 m²
- Área neta = 2.24m² U. Ex.
- Entre surco =30 cm
- Entre plantas = 15 cm
- Pasillo =50 cm
- Número de plantas por unidad experimental = 80plts.

Anexo 2. Análisis de abono

Resultados del análisis quimico de ESTIERCOL en meg/L y ppm

Parámet	tros:				
pH:	6,56				
Conductiv	vidad eléc	trica:	0,150	dS/m	
Cationes:		-		0100000	
Ca*2	0,2	meq/L	Ca	4	ppm
Mg*2	0	meq/L	Mg	0,0	ppm
(*	8	meq/L	K	312,00	ppm
Va*	2	meq/L	Na	46,0	ppm
NH4*	8	meq/L	N-NH4	112,0	ppm
Suma de	cationes	18,2	meq/L		3
Aniones:					_
NO3.	18	meq/L	N-NO ₃	252,1	ppm
SO4-2	0	meq/L	S	0	ppm
12PO4	0,02	meq/L	P	0,6	ppm
20,2	0	meq/L	CO3	0	ppm
HCO3	0,00	meq/L	HCO ₃	0	ppm
CI.	1,5	meq/L	CI	53,3	ppm
Suma de	aniones	19,52	meq/L		-
		_			
rds	74,5	ppm	Si esta entre 0-	300 Excedien	te: 300 -600 Nivel bueno: 900-1200 nivel no recomendable
SALT	37,8	ppm			
Microelen	nentos:				
Fe	0	ppm			
Cu	0	ppm			
Mn	0	ppm			

Características del agua:

ppm

RAS	6,3	-			SI RAS < 3 no hay problemas de sodicidad
Dureza del a	igua	0	grados hidrotimétri	cos franceses (ghf)	Se considera agua dura si ghf > 32
CE generada	a por sale	s nociva:	s (Na. Cl. HCO3)	0,23	
CE generada	a por sale	s nutrien	tes	-0,08	

Cuantos ml/m3 se ocupan de ácido para bajar el pH del agua de riego hasta 5.5 - 6.6

Acido sulfúrico:	Densidad	1,84	g/cm ³	Pureza	98	%	-27,2	ml/m3
Acido fosfórico:	Densidad	1,66	g/cm ³	Pureza	75	%	-78,7	ml/m ³
Acido nítrico:	Densidad	1,11	g/cm ³	Pureza	70	%	-81,1	ml/m3

M. Sc. Vistor Paye Huaranca GERENTE GINERAL DE LABSAS PRO

Anexo 3. Preparación de terreno

Anexo 4. Nivelación del sustrato

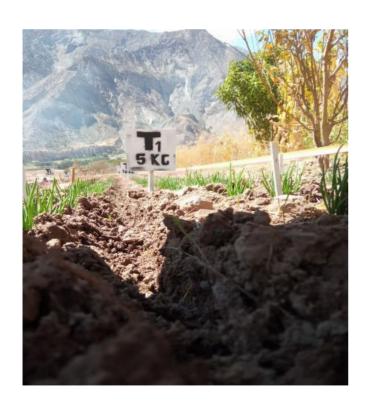
Anexo 5. Limpieza de la semilla

Anexo 6. Riego inicial posterior al surqueo

Anexo 7. Plantación de propágulos de cebollín según distancia de siembra

Anexo 8. Evaluación del prendimiento del cebollín (10 días)

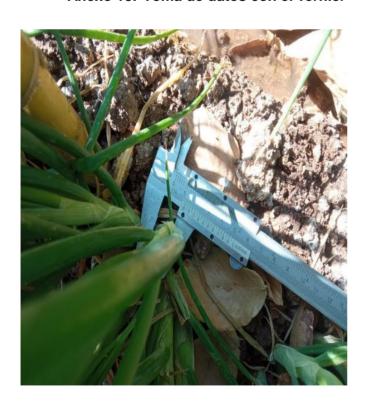
Anexo 9. primera evaluación de variables (15 días)



Anexo 10. Aporque del cebollín

Anexo 11. Cebollín: crecimiento tras aporque y riego

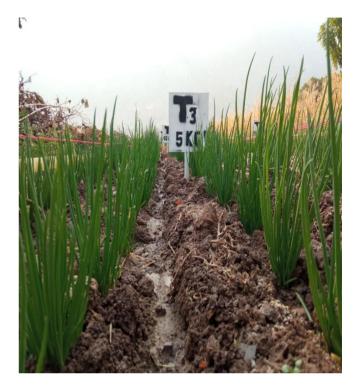




Anexo 12. Riego del cebollín

Anexo 13. Toma de datos con el vernier

Anexo 14. Aporque del Cebollín



Anexo 15. Altura de hoja

Anexo 16. Cosecha del cebollín por metro cuadrado

Anexo 17. Lavado manual del cebollín en recipiente

Lavado en baldes

En bañadores

Anexo 18. lavado del cebollín en el agua de la sequia

Anexo 19. Proseguimos al pesaje del cebollín

Anexo 20. Se procedió a formar manojos de cebollín al finalizar la cosecha

