UNIVERSIDAD PÚBLICA DE EL ALTO CARRERA INGENIERÍA DE SISTEMAS

TESIS DE GRADO

"MODELO DE ANÁLISIS FORESTAL EN BASE A GOOGLE EARTH ENGINE APLICADO AL GOBIERNO AUTÓNOMO MUNICIPAL DE VIACHA"

Para Optar al Título de Licenciatura en Ingeniería de Sistemas

MENCIÓN: INFORMÁTICA Y COMUNICACIONES

Postulante: Univ. Yhenny Valeriano Huanca

Tutor Metodológico: Lic. Ing. Dionicio Henry Pacheco Rios

Tutor Revisor: Lic. Santos Chillo Espinoza

Tutor Especialista: Lic. Gladys Francisca Chuquimia

Mamani

EL ALTO - BOLIVIA

2023

DECLARACIÓN JURADA DE

AUTENTICIDAD Y RESPONSABILIDAD

Yo, Yhenny Valeriano Huanca estudiante con C.I. 9231200LP mediante la presente

declaro de manera pública que la propuesta del TRABAJO DE GRADO titulada

"MODELO DE ANÁLISIS FORESTAL EN BASE A GOOGLE EARTH ENGINE

APLICADO AL GOBIERNO AUTÓNOMO MUNICIPAL DE VIACHA" es original,

siendo resultado de mi trabajo personal y no constituye una copia o replica de trabajos

similares elaborados.

Autorizo la publicación del resumen de mi propuesta en internet y me comprometo a

responder a todos los cuestionamientos que se desprenden de su lectura.

Asimismo, me hago responsable ante la universidad o terceros, de cualquiera

irregularidad o daño que pudiera ocasionar, por el incumplimiento de lo declarado.

De identificarse falsificación, plagio, fraude, o que el **TRABAJO DE GRADO** haya sido

publicado anteriormente: asumo las consecuencias y sanciones que de mi acción se

deriven, responsabilizándome por todas las cargas legales que se deriven de ello

sometiéndome a las normas establecidas y vigentes de la Carrera de Ingeniería de

Sistemas de la Universidad Pública de El Alto.

El Alto, diciembre del 2023.

Firma

Yhenny Valeriano Huanca

C.I. 9231200

e-mail: yhennyvaleriano@gmail.com

DEDICATORIA

A Dios quien ha sido mi guía, por permitirme concluir este trabajo de grado, brindándome las herramientas necesarias para poder realizarlo.

A mi padre y hermanos quienes me impulsaron a seguir adelante acompañándome en cada paso que doy y en especial a mi madre y mi hija Alba Aitana quienes con su amor, paciencia y esfuerzo me han permitido llegar a cumplir hoy una meta más, brindándome su apoyo incondicional en todo este proceso, siendo mi pilar fundamental pues sin ellas no lo habría logrado.

Finalmente, a mis amigos, por apoyarme cuando más lo necesite, por siempre extender su mano en momentos difíciles.

Yhenny Valeriano Huanca

AGRADECIMIENTOS

A Dios por guiarme en el camino, por darme la fortaleza para seguir adelante y poder realizar este trabajo de grado.

A mi familia por su apoyo, amor y comprensión en todo momento e impulsarme a seguir adelante y no rendirme. Siempre fueron mis mejores guías de vida, sin ustedes todo esto no habría sido posible.

Al ing. Enrique Flores Baltazar por el apoyo, paciencia, disponibilidad de tiempo y conocimiento brindado mediante las cuales se realizó el trabajo de investigación.

A la Lic. Gladys Francisca Chuquimia Mamani por la comprensión, apoyo y paciencia que me brindo en este proceso.

Al Ing. Santos Chillo Espinoza por el tiempo y en conocimiento brindado en este trabajo de investigación.

Al Ing. Dionicio Henry Pacheco Rios por su apoyo, compresión y corrección del presente trabajo de investigación.

A los docentes por todo el apoyo brindado a lo largo de la carrera, por su tiempo, amistad y por los conocimientos que me trasmitieron.

INDICE GENERAL

CAPITULO I

1.	MARCO PRELIMINAR	1
1.1	INTRODUCCIÓN	1
1.2.	ANTECEDENTES	2
1.2.1.	Antecedentes Internacionales	2
1.2.2.	Antecedentes Nacionales	3
1.2.3.	Antecedentes Locales	4
1.3.	PLANTEAMIENTO DEL PROBLEMA	5
1.3.1.	Problema general	5
1.3.2.	Problemas Específicos	5
1.3.3.	Formulación del problema	6
1.4.	OBJETIVOS	6
1.4.1.	Objetivo general	6
1.4.2.	Objetivos Específicos	6
1.5.	HIPÓTESIS	7
1.5.1.	OPERACIONALIZACIÓN DE VARIABLES:	7
1.5.1.1.	VARIABLE INDEPENDIENTE	7
1.5.1.2.	VARIABLE DEPENDIENTE	7
1.5.2.	Conceptualización de Variables	8
1.5.2.1.	Modelo	8
1.5.2.2.	Análisis	8
1.5.2.3.	Forestal	8
1.5.2.4.	Forestación	g
1.5.2.5.	Reforestación	g
1.5.2.6.	Deforestación	g
1.5.2.7.	Google Earth Engine	10
1.5.2.8.	Índices de Vegetación	10
1.6.	JUSTIFICACIÓN	11
1.6.1.	Técnica	11
1.6.2.	Económica	11
1.6.3.	Social	11
1.6.4.	Científica	11

ı

1.7.	METODOLOGÍA	12
1.7.1.	Método Científico	12
1.7.1.1.	Fases	12
1.7.1.2.	Técnicas	12
1.7.2.	Método De Ingeniería	12
1.7.2.1.	Metodología UWE	12
1.7.2.2.	Técnicas	13
1.7.2.3.	Fases	13
1.7.3.	Metodología de Teledetección para el análisis de las imágenes de satélite	14
1.8.	MÉTRICAS DE CALIDAD AL SOFTWARE	14
1.8.1.	Modelo de Calidad del Software ISO ISO/IEC 25000	14
1.9.	ESTIMACIÓN DE COSTOS	15
1.9.1.	Método COSMIC	15
1.9.1.2.	Etapas	15
1.10.	HERRAMIENTAS	15
1.10.1.	Hardware	15
1.10.2.	Software	16
1.11.	LÍMITES Y ALCANCES	17
1.11.1.	Limites	17
1.11.2.	Alcances	17
1.12.	APORTES	17
2.	MARCO TEÓRICO	18
2.1.	INTRODUCCIÓN	18
2.2.	INFORMACIÓN	18
2.3.	MODELO	19
2.4.	ANÁLISIS	19
2.5.	ANÁLISIS DE DATOS	19
2.5.1.	Tipos de análisis de datos	20
2.6.	RECURSOS FORESTALES	20
2.6.1.	Tipos de recursos forestales	20
2.7.	FORESTACIÓN	21
2.7.1.	Tipos de Forestación	21
2.8.	REFORESTACIÓN	22
2.8.1.	Beneficios de la Reforestación	22

2.8.2. Fases de la Reforestación	23
2.9. DEFORESTACIÓN	24
2.9.1. Causas de la Deforestación	25
2.10. MUNICIPIO DE VIACHA.	25
2.10.1. Vegetación del municipio de Viacha	30
2.11. GOOGLE EARTH ENGINE	31
2.11.1. Plataforma.	32
2.11.2. Geoespacial	32
2.11.3. Datos geográficos.	33
2.11.3.1. Vector	33
2.11.3.2. Ráster.	34
2.11.4. Imagen Satelital.	34
2.11.5. Colecciones de datos e imágenes de Google Earth Engine.	35
2.11.5.1. Lansadt	36
2.11.5.2. Centinela	36
2.11.5.3. Modis	37
2.11.6. Editor de código	38
2.11.7. Algoritmos	43
2.12. SISTEMA DE INFORMACIÓN GEOGRAFICA	47
2.13. INDICES DE VEGETACIÓN	47
2.13.1. Índices de vegetación en Google Earth Engine.	48
2.14. USO DE SUELOS	52
2.15. MONITOREO	52
2.15.1. Tipos de monitoreo.	53
2.16. TERRITORIO	54
2.16.1. Estructura territorial de Bolivia.	54
2.17. DATOS	54
2.18. INGENIERIA DE SISTEMAS	55
2.19. INVESTIGACIÓN	55
2.19.1. Tipos de investigación.	55
2.19.1.1. Según el objetivo	56
2.19.1.2. Según el método	56
2.19.1.3. Según la fuente	56
2.19.1.4. Según el resultado	57

2.20.	METODOLOGÍAS	57
2.21.	MÉTODO CIENTÍFICO	57
2.21.1.	Concebir la idea a investigar.	58
2.21.2.	Planteamiento del problema de investigación.	58
2.21.3.	Elaboración del marco teórico.	58
2.21.4.	Definición del alcance de la investigación a realizar.	59
2.21.5.	Formulación de hipótesis.	60
2.21.6.	Diseños de investigación.	61
2.21.7.	Selección de muestra.	62
2.21.8.	Recolección de los datos.	63
2.21.9.	Análisis de datos.	64
2.21.10.	Elaboración del reporte de investigación.	64
2.22.	METODOLOGÍA UWE	66
2.22.1.	Modelos de UWE	66
2.22.1.1.	Modelo de requisitos:	67
2.22.1.2	Modelo de Contenido:	67
2.22.1.3.	Modelo de navegación	68
2.22.1.4	Modelo de presentación	69
2.22.1.5.	Modelo de proceso	70
2.22.2.	Fases de UWE	71
2.23. DE SAT	METODOLOGÍA DE TELEDETECCIÓN PARA EL ANÁLISIS DE LA ÉLITE	AS IMÁGENES 73
2.24.	MÉTRICA DE CALIDAD AL SOFTWARE	75
2.24.1.	Estándar ISO/IEC 25000.	75
2.25.	ESTIMACIÓN DE COSTOS COSMIC	77
2.25.1.	Método COSMIC. Fase 1: Estrategia de medición	79
2.25.2.	Método COSMIC. Fase 2: Mapeo	80
2.20.3.	Método COSMIC. Fase 3: Medición	81
2.21.	HERRAMIENTAS	82
2.21.1.	JavaScript.	82
2.21.2.	Servidor Virtual Privado VPS	85
2.21.3.	Visual Studio Code.	85
2.21.4.	QGIS.	86
2.21.5.	XAMPP.	89

2.21.6.	Google Earth Engine.	89
2.21.7.	GeoServer	91
2.21.8.	FileZilla	92
3.1	INTRODUCCIÓN	93
3.2	ETAPAS DEL MÈTODO CIENTÌFICO	94
3.3	ENFOQUE CAUSAL	96
3.4	Metodología UWE	97
3.3.1.	Modelo de requisitos:	97
3.3.2.	Casos de Uso	99
3.3.3.	Modelo de contenido	104
3.3.4.	Modelo de navegación	105
3.3.5.	Modelo de presentación	105
3.4. IMÁGEN	METODOLOGÍA DE TELEDETECCIÓN PARA EL PROCESAMIENTO NES DE SATÉLITE	DE
3.4.1.	Fase de descarga de imágenes	108
3.4.2.	Fase de Pre – procesamiento	113
3.4.3.	Fase Retrieval	115
3.5.	IMPLEMENTACIÓN	117
3.5.1.	Obtención de gráfico de cobertura forestal	117
3.5.2.	Implementación de algoritmos	119
3.5.3.	Obtención de imágenes satelitales	148
3.5.4.	Implementación de algoritmos	149
3.5.5.	Proceso de publicación capas shp al GeoServer	154
3.6.	ESTRUCTURA DEL FUNCIONAMIENTO DEL MODELO	163
3.7.	VISUALIZACIÓN DEL MODELO	163
3.8.	METRICAS DE CALIDAD ISO 25000	170
3.8.1.	Funcionalidad	170
3.8.2.	Fiabilidad	172
3.8.3.	Usabilidad	173
3.8.4.	Mantenibilidad	174
3.8.5.	Eficiencia	175
3.8.6.	Portabilidad	176
3.8.7.	Análisis de resultados	177
3.9.	ESTIMACION DE COSTOS COSMIC	177
3.7.1.	Estrategia de medición	178

3.7.2.	Mapeo y medición	178
4.	PRUEBAS Y RESULTADOS	186
4.1.	Numero de muestras	186
4.2.	PRUEBA DE HIPÓTESIS	190
4.2.1.	Proposición de hipótesis	190
4.3.	Análisis de resultados	192
5.	CONCLUSIONES Y RECOMENDACIONES	193
5.1.	ESTADO DE LOS OBJETIVOS	193
5.1.1.	Estados de los objetivos específicos	193
5.2.	ESTADO DE LA HIPÓTESIS	194
5.3.	CONCLUSIONES	195
5.4.	RECOMENDACIONES	195

INDICE DE TABLAS

Tabla 1 Operacionalización de Variables	7
Tabla 2 Límites territoriales del municipio de Viacha	
Tabla 3 Distritos municipales de Viacha, antes y después de su división	28
Tabla 4 Distritos y cantidad de superficie en Km2, que ocupan	
Tabla 5 Vegetación del Municipio de Viacha	30
Tabla 6 Repertorio Landsat	36
Tabla 7 Requerimientos del usuario	97
Tabla 8 Requerimientos funcionales	98
Tabla 9 Requerimientos No Funcionales	98
Tabla 10 Caso de uso Visualiza información	99
Tabla 11 Caso de uso visualiza Time Lapse	100
Tabla 12 Caso de uso visualizar gráfico de análisis forestal	101
Tabla 13 Caso de uso imágenes satelitales	102
Tabla 14 Caso de uso Visualizar capas	103
Tabla 15: Algoritmos utilizados para el desarrollo del modelo	113
Tabla 17: índices de cobertura	
Tabla 18 Datos de cobertura forestal	122
Tabla 19 Datos de cobertura forestal	130
Tabla 20 Datos de cobertura forestal	139
Tabla 21 Métricas internas	170
Tabla 22 Métricas de calidad y sus valores	171
Tabla 23 Módulos y sus valores	172
Tabla 24 Características de las Métricas Internas	173
Tabla 25 Valores obtenidos de la métrica de calidad	173
Tabla 26 Valores de evaluación	175
Tabla 27 Preguntas de evaluación	175
Tabla 28 Resultado de la evaluación de calidad	177
Tabla 29 Datos obtenidos para la muestra	186

INDICES DE FIGURAS

Figura 1 Mapa De La República De Bolivia, Departamento De La Paz, P	rovincia
Ingavi Y Municipio De Viacha	26
Figura 2: Distritos municipales del Municipio de Viacha	27
Figura 3: Superficie De Área Residencial Ocupada	28
Figura 4: Gráfico de distritos	29
Figura 5: Datos vectoriales	34
Figura 6: Datos Raster	34
Figura 7: Bandas Sentinel	37
Figura 8: Code Editor	
Figura 9: Panel Central	39
Figura 10: Panel de herramientas	39
Figura 11: Get Link	
Figura 12: Visor de mapas	40
Figura 13: Búsqueda de lugares y conjunto de datos	
Figura 14: Panel de administración, documentos API, administrador de a	activos 41
Figura 15: Panel de inspección, consola y tareas	
Figura 16: Botón de ayuda	
Figura 17: Herramientas de dibujo geométrico	
Figura 18: Administrador de Layers.	
Figura 19: NDVI	
Figura 20: Modelo de casos de uso	
Figura 21: Modelo de contenido	
Figura 22: Modelo de transformación de contenido a navegación	
Figura 23: Modelo de Navegación	69
Figura 24: Modelo de presentación	
Figura 25: Modelo de proceso	
Figura 26: Metodología De Teledetección Para El Análisis De Las Imáge	
Satélite	
Figura 27: ISO 25000	
Figura 28: Fases de medición	
Figura 29: El proceso de medición COSMIC	
Figura 30: Etapas del método científico	
Figura 31: Esquema del método científico.	
Figura 32: Diagrama causal	96
Figura 33: Modelo de Google Earth Engine	
Figura 34: Visualiza información	
Figura 35: Visualiza Time Lapse	
Figura 36: Gráfico de cobertura forestal	
Figura 37: Visualizar Imágenes Satelitales	
Figura 38: Visualiza Capas	
Figura 39: Modelo, de Contenido	104

Figura	40:	Modelo de navegación	105
Figura	41:	Modelo de presentación de la página principal	106
Figura	42:	Modelo presentación del módulo de capas	106
Figura	43:	Modelo de presentación del módulo Time Lapse	107
Figura	44 :	Modelo de presentación del módulo de Cobertura Forestal	107
Figura	45:	Modelo de presentación del módulo de imágenes satelitales	108
Figura	46:	Data Catalog Google Earth Engine	109
Figura	47 :	Datos Sentinel 2	110
		Catálogo de GeoBolivia Municipios de Bolivia	
		Capa de GeoBolivia en QGIS	
_		Procesamiento de la capa de Geo Bolivia	
		Capa procesada del Municipio.	
		Subir archivo shp a Google Earth Engine.	
		Zona de estudio procesada en Google Earth Engine	
		Imagen Sentinel e Imagen NDVI del municipio de Viacha	
		Modelo de cobertura forestal procesada en Google Earth Engine	
•		Gráfico de cobertura forestal	
_		Gráfico de las coordenadas: Ion: -68.23455 y lat: -16.54678	
		Gráfico de las coordenadas: Ion: -68.20875 y lat: -16.43356	
_		Gráfico de las coordenadas: Ion: -68.22753 y lat: -16.57281	
		Modelo de imágenes satelitales.	
		Imágenes sentinel de cada año	
		Coordenadas de fábricas en el municipio de Viacha	
_		Añadimos capa de texto delimitado	
		Capa de texto delimitado	
		Archivos en FileZilla.	
		Pantalla principal del geoserver	
_		Nueva Capa	
•		Seleccionamos el espacio de trabajo	
_		Capas subidas	
_		Añadimos nuevo estilo	
•		Nuevo estilo	
_		Publicar capa	
		Capa publicada.	
_		Capas subidas al Geoserver.	
		Visualización de capa de fábricas en Geoserver	
_		Funcionamiento del modelo	
_		Modulo de Información	
_		Modulo de capas.	
_		Capa visualizada	
		Modulo de Lapso de tiempo 2022	
		Modulo de Lapso de tiempo 1984	
Figura	82:	Modulo de gráfico de cobertura forestal	168

Figura 83: Modulo de imágenes satelitales	170
Figura 84: Tabla de valores Z	
Figura 85: Figura de intervalo de aceptación y rechazo	192

RESUMEN

El presente trabajo de investigación plantea un modelo de análisis forestal en base a Google Earth Engine aplicado al Gobierno Autónomo Municipal de Viacha, con el objetivo de conocer los cambios en el medio ambiente en este caso de la cobertura forestal, logrando obtener datos e imágenes satelitales respecto a los cambios forestales. Para obtener el grafico de cobertura forestal se trabajó con el índice de vegetación NDVI y se hizo uso de la colección de imágenes del satélite Sentinel con la cual se logró obtener imágenes desde el año 2016 hasta la actualidad, como también se utilizó un GeoServer en el cual nos permite compartir y visualizar datos geoespaciales de lugares estratégicos del Municipio de Viacha.

El trabajo de investigación consta de cinco capítulos los cuales se describen a continuación. En el capítulo I se abarca la parte introductoria, identificando los problemas, objetivos, se plantea la hipótesis, variables dependientes e independientes, como también las metodologías a usarse, las herramientas para el desarrollo del modelo, los límites y alcances del trabajo de investigación.

En el capítulo II se muestra la parte teoría que ayudara a comprender mediante conceptos y definiciones el modelo de análisis forestal, para lo cual se utilizara la plataforma de Google Earth Engine como herramienta de procesamiento, obtención de datos e imágenes satelitales.

El tercer capítulo nos muestra el modelo de análisis forestal, su desarrollo, funcionamiento e implementación, como también las métricas de calidad y costos del mismo, que fueron de ayuda para el desarrollo de la investigación.

En el capítulo IV se muestran las pruebas, resultados e interpretación de la hipótesis planteada en la investigación.

En el capítulo V se realiza la conclusión de acuerdo a los objetivos planteados y recomendaciones para futuros trabajos.

Palabras clave: Google Earth Engine, modelo, forestal, Viacha, análisis, imagen satelital, cobertura, SIG.

SUMMARY

The present research work proposes a forest analysis model based on Google Earth Engine applied to the Municipal Autonomous Government of Viacha, with the objective of knowing the changes in the environment in this case of forest cover, obtaining data and satellite images regarding forest changes. To obtain the forest cover graph, we worked with the NDVI vegetation index and used the collection of images from the Sentinel satellite with which images were obtained from 2016 to the present, as well as using a GeoServer in the which allows us to share and visualize geospatial data from strategic places in the Municipality of Viacha.

The research work consists of five chapters which are described below. Chapter I covers the introductory part, identifying the problems, objectives, the hypothesis, dependent and independent variables, as well as the methodologies to be used, the tools for the development of the model, the limits and scope of the research work.

Chapter II shows the theory part that will help understand the forest analysis model through concepts and definitions, for which the Google Earth Engine platform will be used as a processing tool, obtaining data and satellite images.

The third chapter shows us the forest analysis model, its development, operation and implementation, as well as its quality and cost metrics, which were helpful in the development of the research.

Chapter IV shows the tests, results and interpretation of the hypothesis raised in the research.

In chapter V the conclusion is made according to the stated objectives and recommendations for future work.

Keywords: Google Earth Engine, model, forestry, Viacha, analysis, satellite image, coverage, SIG.

LISTADO DE ABREVIATURAS

GEE	Google Earth Engine	
SIG	Sistemas de Información Geográfica	
NDVI	Índice de Vegetación de Diferencia Normalizada	
UWE	UML – based Web Engineering	
UML	Unified Modeling Language	
CPF	Punto de Función COSMIC	
OGC	Open Geospatial Consortium	
FTP	Protocolo de Transferencia de Ficheros	
API	Interfaz de Programación de Aplicaciones	
GPS	Sistema de Posicionamiento Global	
DEM	Modelo Digital de elevación	
USGS	Servicio Geológico de Estados Unidos	
RGB	Rojo, verde y azul	
SQuaRE	Evaluación y requisitos de calidad del sistema y software	
FUR	Requisitos Funcionales del Usuario	
GUI	Interfaz Gráfica de Usuario.	
OGR	Es un conjunto de herramientas que permiten el manejo y uso de	
	datos Geoespaciales Vectoriales	
GPX	Formato de Intercambio GPS	
GPL	General Public Licence	
OSM	OpenStreerMap	
EROS	Earth Resources Observation and Science	
Observación y ciencia de los recursos terrestres		
NAIP National Agriculture Imagery Program		
	Programa Nacional de Imágenes Agrícolas	
WMS	Web Map Service (Servicio de Mapas Web)	
WFS	Web Feature Service (Servicio de funciones web)	
WCS	Web Coverage Service (Servicio de Cobertura Web)	

CAPITULO I MARCO PRELIMINAR

1. MARCO PRELIMINAR

1.1 INTRODUCCIÓN

El presente trabajo de investigación establece como tema el Modelo de análisis forestal en base a Google Earth Engine aplicado al Gobierno Autónomo Municipal De Viacha. Los censos que se realizan en el país solo se encarga de recoger datos de los habitantes, cuántos son, donde viven y como viven en un determinado momento, sin embargo no da conocimiento respecto a la vegetación que se tiene en un determinado tiempo por ello se realiza un modelo que permitirá proporcionar información, datos geográficos que cooperaran en la planificación territorial, implementar programas, proyectos y optimizar la asignación de recursos.

Los problemas encontrados en la investigación realizada en el municipio de Viacha, es el crecimiento territorial y cambios climatológicos lo cual afecta a los índices de vegetación, no pueden ser monitoreados año tras año por esta razón se considera necesario tener un modelo para poder observar mediante imágenes satelitales e histogramas la vegetación que se tiene desde años atrás hasta la actualidad. El mal uso del suelo por parte de pobladores en áreas protegidas provoca un efecto negativo para el medio ambiente y la ciudadanía contaminando el mismo.

El presente trabajo de investigación, plantea una solución a este problema, con el modelo de Google Earth Engine por el cual se realiza el monitoreo de la cobertura forestal aplicado al Municipio de Viacha, tiene como propósito mejorar, brindar información y datos, implementar programas, proyectos que serán útiles para dicho municipio.

En cuanto a la metodología científica empleada en el presente trabajo se utilizó el Método Deductivo e Inductivo que ayudaron en el desarrollo del tema, tomando en las fases de observación, planteamiento del problema, formulación de hipótesis, experimentación, análisis de datos y conclusiones; la Metodología UWE permite representar todas las etapas del proceso de desarrollo del modelo. Metodología de Teledetección para el análisis de las imágenes de satélite que consta de tres fases: la

descarga de las imágenes, el pre-procesamiento y el modelo retrieval, que ayudaran a obtener información respecto a la cobertura terrestre.

1.2. ANTECEDENTES

1.2.1. Antecedentes Internacionales

- Ji, Jiahao. (2020), Desarrollo de una herramienta de integración de datos de imágenes de satélite en Google Earth Engine. Presenta un trabajo de fin de grado para lograr el monitoreo constante de la tierra con buena resolución de forma regular, para observar los cambios, utilizado Google Earth Engine que es una plataforma a escala planetaria para aplicar analítica y ciencia de datos a la Tierra, proporciona de forma gratuita un catálogo de imágenes de satélites, de varios terabytes de tamaño. En este trabajo fin de grado se implementó soluciones de pansharpening y de fusión de imágenes multiespectrales empleando el lenguaje de programación python, aplicando métodos basados en la transformada wavelet a trous original, y dos de sus variantes que nos permiten regular el balance entre calidad espectral y calidad espacial de la imagen fusionada. También se implementó las métricas de calidad ERGAS espectral y ERGAS espacial, para analizar la calidad espectral y la calidad espacial de la imagen fusionada por separado.
- Subia, Y., (2020). Análisis multitemporal de cambio de cobertura vegetal y uso de suelos en El Parque Nacional Bahuaja Sonene y su zona de amortiguamiento. Esta investigación tiene como objetivo realizar un análisis multitemporal del cambio de cobertura vegetal y uso de suelos en el PNBS y su ZA dentro del periodo de 1984 2018. En su desarrollo se utilizó la metodología adaptada de MAPBiomas Perú, empleando como herramienta la plataforma de Code Editor, el cual es parte de una plataforma geomática denominada Google Earth Engine, estimándose como un gran motor de procesamiento y análisis de imágenes satelitales, facilitando en gran medida el procesamiento de datos, en razón de que realiza grandes procesamientos de datos de información geoespacial. Para el análisis se utilizó las bandas multiespectrales de las imágenes satelitales Landsat 4, 5, 7 y 8, así como

los índices de NDVI, NDWI, EVI2, CAI. Se tuvo como resultados en la zona de amortiguamiento los suelos agrícolas presentan un crecimiento considerable a partir del año 2010, determinándose que entre el periodo de 1984 – 2019 el 2.95% de su territorio presento cambio de uso de suelos por la expansión de suelos agrícolas.

1.2.2. Antecedentes Nacionales

- Lucana, R., Villalobos, M., (2018). Mapa de la cobertura y uso de la tierra periodo 2015 de la Provincia Jose Miguel De Velasco Santa Cruz. Presenta el trabajo dirigido para la teledetección de imágenes de satélite (LANDSAT 8). Sistemas de Información Geográfica para estimar los cambios en la cobertura y uso de la tierra, el área de estudio es la provincia San Miguel de Velasco del departamento de Santa Cruz, se encuentra sub dividido en tres secciones municipales. Se aplicó la metodología LCCS (LAND COVER CLASSIFICATION SYSTEM) establecida por la FAO/UNEP para generar una leyenda jerárquica y estándar que definiera la cobertura y uso de la tierra, para enlazar y generar un mapa. El sistema de Información geográfico se utilizó para hacer un análisis e identificar los cambios históricos, para una interpretación visual, procesamiento digital de las imágenes y clasificación semiautomática se utilizó la plataforma del Google Earth Engine. Los resultados obtenidos, fueron: un aumento de las áreas dedicadas a cultivos, una disminución de áreas con bosque y una intervención en áreas que deberían conservarse.
- Nina, P., Orlando, R., (2012). Ciudades intermedias, otras formas de desarrollo rural integrado. Caso de estudio: municipio de Patacamaya. Universidad Mayor de San Andrés. Presenta como propósito central aportar al conocimiento explicando las causas del crecimiento del Municipio de Patacamaya como Ciudad Intermedia, y como está afectando de manera positiva, a toda una población (urbana y rural) de esta parte del altiplano (Provincia Aroma) y considerarse como alternativa factible en la transformación de su economía y su nivel de vida.
- Duran, M., Edwin, (2003), Agroeconomia y niveles de desarrollo rural en el departamento de La Paz periodo 1985-2002. Universidad Mayor de San Andrés.

Afirma que la agroeconomia analiza la actividad de producción, distribución y consumo del sector rural, su interacción entre los entes como el estado y la población local en el nivel de desarrollo departamental. Según el censo del 2001 el departamento de la paz tiene 2.350.466 habitantes, de los cuales el 66 % viven en el área urbana y el 34 % en las zonas rurales, persiste el problema de pobreza y subdesarrollo en áreas rurales.

1.2.3. Antecedentes Locales

- Choque, J. L. (2020), Sistema De Información Aplicada Al Monitoreo De Índices De Consumo De Gas Natural. Presenta un proyecto de grado para el monitoreo del consumo gas natural para el distrito 8 de la Ciudad de El Alto donde la empresa tiene la información en documentos, Excel, pdf, en tablas donde se recolectó la información de 10 años sobre el consumo gas natural cuyos datos se llevó a una base de datos para poder facilitar una información ordenada de datos que permite acceder de manera inmediata a la información del consumo de gas a domicilio del distrito 8 donde los encargados del área y los usuarios podrán ver el reporte total del consumo por urbanización, mes, año.
- Huanca, K. F. (2020), Sistema De Información Geográficas Aplicado Al Monitoreo De Riesgos De Quema Con Imágenes De Satélite. En este proyecto de grado se realizaron los análisis y se tomaron en cuenta los requerimientos de la institución para efectuar un Módulo de análisis sobre el grado de riesgo de quema; además se implementó el módulo de reportes y un visor geográfico para el monitoreo de áreas de quema y riesgo de quema. Se generó también estadísticas de riesgos de quema, todo lo anterior en base a la información obtenida (plana, espacial).
- Choquehuanca, D. (2020), Sistema De Metadatos Para La Infraestructura De Datos Espaciales. Este proyecto diseñó un Sistema de Metadatos para la Infraestructura de Datos Espaciales que permita catalogar, visualizar y difundir Información oportuna de los datos geográficos.

1.3. PLANTEAMIENTO DEL PROBLEMA

1.3.1. Problema general

El Gobierno Autónomo Municipal de Viacha tiene como misión fundamental, mejorar la calidad de vida de sus habitantes, es un municipio, con visión de futuro de oportunidades para el desarrollo humano integral y promotor del desarrollo económico productivo industrial y competitivo.

Causando que el territorio este en constante crecimiento lo cual afecta de forma directa e indirecta al ambiente forestal, magnificando el riesgo de desastres medioambientales, la contaminación que provoca la pérdida de masa forestal urbana, puede generar más pobreza e impedir que los gobiernos locales ofrezcan servicios a toda su población llegando a la sobreexplotación indiscriminada de los recursos y a una degradación insostenible del ambiente.

Se llevó a cabo la presente investigación con el fin de conocer datos respecto a los índices que vegetación que se tiene en el Municipio de Viacha como va cambiando constantemente, de tal manera que también se puede obtener imágenes satelitales las cuales nos ayudan a ver el cambio que se tuvo desde años anteriores hasta nuestra actualidad, la cual facilitaría la información a distintas organizaciones y a la población en general, ya que no se cuenta con una herramienta que permita realizar el análisis forestal que se tiene dentro de toda su jurisdicción, que recopile y muestre datos e imágenes satelitales de la cobertura forestal .

1.3.2. Problemas Específicos

- Falta de un modelo de seguimiento en base a la cobertura forestal.
- No se tiene estadísticas de la forestación, deforestación y reforestación del municipio lo que lleva a una desinformación a la población.
- La saturación prematura de sus reservas territoriales dando un impacto de transformación ambiental.
- El incremento del proceso de desertificación.

 No se cuenta con una aplicación que muestre imágenes satelitales y datos respecto a la cobertura forestal del municipio.

1.3.3. Formulación del problema

¿El Modelo de análisis forestal en base a Google Earth Engine de qué manera contribuirá al monitoreo, análisis de cobertura forestal y muestra de imágenes satelitales al Gobierno Autónomo Municipal de Viacha?

1.4. OBJETIVOS

1.4.1. Objetivo general

Diseñar un Modelo de análisis forestal en base a Google Earth Engine aplicado al Gobierno Autónomo Municipal de Viacha, que brinde datos e información de los índices de la cobertura forestal, como también imágenes satelitales con las cuales se puede observar los cambios que se tiene en el Municipio.

1.4.2. Objetivos Específicos

- Obtener datos y diagnosticar la situación actual del Gobierno Autónomo Municipal de Viacha respecto a su entorno ambiental.
- Búsqueda y análisis de imágenes de satélite desde el banco de datos de Google
 Earth Engine.
- Implementar algoritmos de Google Earth Engine para la realización del modelo aplicado al Gobierno Autónomo Municipal de Viacha.
- Desarrollar aplicaciones utilizando la plataforma Google Earth Engine a fin de conocer la información de los cambios forestales.
- Analizar la información de la cobertura terrestre para ver y evaluar las variaciones cronológicas.
- Desarrollar reportes de índices de vegetación hasta la actualidad y el pronóstico del mismo.

1.5. HIPÓTESIS

H1: El Modelo de análisis forestal mediante el uso Google Earth Engine recopila datos, genera histogramas y capta imágenes satelitales que brinda información respecto a los índices de vegetación, favoreciendo el monitoreo de una ciudad completa, aplicando los conocimientos adquiridos en ingeniería de sistemas estimando el crecimiento forestal del Municipio de Viacha, la presente investigación tendrá una eficacia del 95%.

H0: El Modelo de análisis forestal en base a Google Earth Engine no recopila datos, no genera histogramas, ni capta imágenes satelitales no brinda información respecto a los índices de vegetación, no favorece el monitoreo de una ciudad completa, aplicando los conocimientos adquiridos en ingeniería de sistemas no se estima el crecimiento forestal del Municipio de Viacha.

1.5.1. OPERACIONALIZACIÓN DE VARIABLES:

1.5.1.1. VARIABLE INDEPENDIENTE

Modelo de Análisis

1.5.1.2. VARIABLE DEPENDIENTE

Forestal

Tabla 1 Operacionalización de Variables

VARIABI	LE	TIPO DE VARIABLE	DIMENSIÓN INDICADORES
Modelo	de	Variable	> Algoritmos > Métodos
análisis		Independiente	➤ Procedimientos ➤ Funciones
			HistogramasConjunto de datos
			▶ Bandas de → Gráficos información (Sentinel)

Forestal	Variable	>	Imágenes		>	Procesar	
	Dependiente		satelitales			imágenes	
		>	Lapso	de	>	Índices	de
			tiempo			vegetación	
		>	Gráficos	de	>	Variaciones	
			cobertura			en el tiempo	
			forestal		>	Obtención	de
						datos	

Nota: Tabla de variables dependiente e independiente

1.5.2. Conceptualización de Variables

1.5.2.1. Modelo

Un modelo es una representación de un objeto, sistema o idea, de forma diferente al de la entidad misma. El propósito de los modelos es ayudarnos a explicar, entender o mejorar un sistema. Un modelo de un objeto puede ser una réplica exacta de éste o una abstracción de las propiedades dominantes del objeto. (Martínez, L. 2012).

1.5.2.2. Análisis

El análisis de datos convierte datos sin procesar en información práctica. Incluye una serie de herramientas, tecnologías y procesos para encontrar tendencias y resolver problemas mediante datos. Los análisis de datos pueden dar forma a procesos empresariales, mejorar la toma de decisiones e impulsar el crecimiento

1.5.2.3. Forestal

La cobertura vegetal puede ser definida como la capa de vegetación natural que cubre la superficie terrestre, comprendiendo una amplia gama de biomasas con diferentes características fisonómicas y ambientales, que van desde pastizales hasta las áreas cubiertas por bosques naturales. También se incluyen las coberturas vegetales inducidas que son el resultado de la acción humana, como serían las áreas de cultivos. (Rincón Romero et al., 2012, p. 2)

Los ecosistemas forestales son un bien público esencial para el desarrollo sostenible; proveen servicios ambientales vitales para los seres humanos, como agua, control de la erosión, alimentos, productos medicinales y captura de carbono, así como bienes maderables y no maderables que son estratégicos para el desarrollo social y económico en armonía con el medio ambiente. (Educación ambiental, 2021).

1.5.2.4. Forestación

La forestación se refiere a la plantación y cultivo de vegetación forestal en terrenos no forestales con propósitos de conservación, restauración o producción comercial (Ley Forestal 1997)

1.5.2.5. Reforestación

La reforestación es el establecimiento inducido o artificial de vegetación forestal en terrenos forestales.

Sin embargo, a las plantaciones con propósitos de restauración y conservación indistintamente de su ubicación en terrenos forestales o no forestales, se les considera con el nombre genérico de reforestación y se incluyen también a las plantaciones urbanas (Atlas Forestal de México, 1999).

La reforestación es un proceso que se realiza a lo largo del año e involucra los siguientes pasos:

- 1. Planeación
- 2. Preparación del sitio
- 3. Plantación
- 4. Seguimiento y Mantenimiento

1.5.2.6. Deforestación

Según Wunder (2001), el concepto de deforestación está relacionado con varios términos no totalmente delimitados (pérdida de bosque, fragmentación, conversión o degradación). Por este motivo, el autor categoriza los diferentes enfoques predominantes sobre las definiciones de deforestación en visiones "amplia" y "estrecha".

Por un lado, la visión "amplia" incluye no sólo la conversión del bosque a otros usos, sino también diferentes tipos de degradación que reducen la calidad del bosque en términos de densidad y estructura, servicios ecológicos, biomasa y diversidad de especies, entre otros. Bajo este enfoque, la tala selectiva se convierte en uno de los principales factores de deforestación

1.5.2.7. Google Earth Engine

Es una plataforma para el análisis científico a escala peta byte (PB) y la visualización de conjuntos de datos geoespaciales, tanto para el beneficio público como para los usuarios comerciales y de la Administración. La principal diferencia con la aplicación Google Earth es la capacidad de análisis de los datos. Earth Engine almacena imágenes satelitales, las organiza y las pone a disposición por primera vez para la extracción de datos a escala global. El archivo público de datos incluye imágenes históricas de la tierra que se remontan a más de cuarenta años, y se recopilan nuevas imágenes todos los días. Earth Engine también proporciona APIs en JavaScript y Python, así como otras herramientas, para permitir el análisis de grandes conjuntos de datos. (Ramos, 2018).

1.5.2.8. Índices de Vegetación

Los índices de vegetación son medidas cuantitativas, basadas en los valores digitales, que tienden a medir la biomasa o vigor vegetal. Usualmente el índice de vegetación es una combinación de las bandas espectrales, siendo el producto de varios valores espectrales que son sumados, divididos, o multiplicados en una forma diseñada para producir un simple valor que indique la cantidad o vigor de vegetación dentro de un píxel. Permitiéndonos estimar y evaluar el estado de salud de la vegetación, en base a la medición de la radiación que las plantas emiten o reflejan.

Altos valores de índices de vegetación identifican píxeles cubiertos por proporciones substanciales de vegetación saludable. Existe una variedad de índices de vegetación que han sido desarrollados para ayudar en el monitoreo de la vegetación. La mayoría de estos índices están basados en las interacciones diferentes entre la vegetación y la energía electromagnética de las bandas del espectro rojo e infrarrojo (García, 2015).

1.6. JUSTIFICACIÓN

1.6.1. Técnica

Con el Modelo de análisis forestal se permite a los usuarios visualizar y analizar imágenes de satélite, podemos llevar a cabo estudios de teledetección, monitoreo, cambios climáticos, forestales se puede contar con imágenes satelitales desde años atrás para llevar a cabo investigaciones, la cual sería importante para el Gobierno Autónomo Municipal de Viacha ya que daría a conocer los índices de vegetación que ocurre año tras año.

1.6.2. Económica

El presente Modelo de análisis forestal en base a Google Earth Engine aplicado al Gobierno Autónomo Municipal de Viacha tiene un beneficio económico mayor por el acceso al uso de la plataforma. El costo de uso es nulo por el hecho de que la plataforma es absolutamente gratuita, permite acceder a toda la población a los datos actualizados brindados por la plataforma ya mencionada.

1.6.3. Social

Se facilitaría visualizar datos de imágenes del municipio a toda la población, que brinde información sobre los índices de cobertura forestal continua, de forma más rápida y eficiente que ayudaría al análisis y planificación ambiental.

1.6.4. Científica

Para lograr los objetivos planteados, se acudirá al empleo de la plataforma Google Earth Engine, Sistemas de Información Geográfica, técnicas de investigación, las cuales brindaran los datos geográficos y ambientales, visualización en un ámbito global completo y detallado. Este modelo tendrá una contribución científica porque ayudará a diagnosticar la situación actual del municipio, realizar un seguimiento desde hace varios años atrás, estadísticas y pronostico respecto a la cobertura forestal.

1.7. METODOLOGÍA

1.7.1. Método Científico

"El método científico, se refiere a la serie de etapas a recorrer para obtener un conocimiento valido desde el punto de vista científico, utilizando para esto instrumentos que resulten fiables" (Sampieri, 2010).

1.7.1.1. Fases

- Concebir la idea a investigar.
- Planteamiento del problema de investigación.
- Elaboración del marco teórico.
- Definición del alcance de la investigación a realizar.
- Formulación de la hipótesis diseños de investigación.
- Selección de muestra.
- Recolección de los datos.
- Análisis de datos.
- Elaboración del reporte de investigación.

1.7.1.2. **Técnicas**

Las técnicas que usaremos para la recolección de datos serán:

- La georreferenciación, mediante el cual se van a capturar coordenadas geográficas de lugares estratégicos del Municipio de Viacha.
- Investigación mediante software de apoyo como ser QGIS, Google Earth Pro, entre otros.
- Recolección de datos con los cuales recabar información del municipio de fuentes internas y/o externas.

1.7.2. Método De Ingeniería

1.7.2.1. Metodología UWE

UML-based Web Engineering (UWE) es una metodología basada en el lenguaje UML (Unified Modeling Language) utilizada para modelar aplicaciones web, permitiendo

representar todas las etapas del proceso de desarrollo de software. UWE utiliza notación UML así como sus diagramas para hacer el análisis y el diseño de aplicaciones web. (Camelier, 2013).

1.7.2.2. **Técnicas**

Para desarrollar la metodología UWE utilizaremos las siguientes técnicas:

- Puntos de control.
- Diagramas para realizar el análisis.
- Restricciones en el desarrollo.
- Notaciones estándar.
- Modelos de caso de uso.

1.7.2.3. Fases

- 1) Captura, análisis y especificación de requisitos: En simple palabras y básicamente, durante esta fase, se adquieren, reúnen y especifican las características funcionales y no funcionales que deberá cumplir la aplicación web.
- 2) Diseño del sistema: Se basa en la especificación de requisitos producido por el análisis de los requerimientos (fase de análisis).
- 3) Codificación del software: Durante esta etapa se realizan las tareas que comúnmente se conocen como programación.
- **4) Pruebas:** Las pruebas se utilizan para asegurar el correcto funcionamiento de secciones de código.
- **5) La Instalación o Fase de Implementación:** Proceso por el cual los programas desarrollados son transferidos apropiadamente al computador destino.
- **6) El Mantenimiento**: es el proceso de control, mejora y optimización del software ya desarrollado e instalado, que también incluye depuración de errores y defectos que puedan haberse filtrado de la fase de pruebas descontrol.

1.7.3. Metodología de Teledetección para el análisis de las imágenes de satélite

En los últimos años la teledetección se ha convertido en una herramienta fundamental para la de adquisición de datos de la superficie terrestre. Sin embargo, la teledetección tiene algunas limitaciones en cuanto a resolución espacial, espectral y temporal de las imágenes disponibles. Los satélites ofrecen imágenes multitemporales que poseen una enorme cantidad de datos que brindan información respeto a la cobertura terrestre y las características que posee. Los satélites Sentinel-2 de la Agencia Espacial Europea forman parte de estas tecnologías ya que cuenta con seis satélites que recogen imágenes completas de la superficie de la tierra, cuerpos de agua y otros objetos geográficos. La metodología consta de tres fases:

- > Fase de descarga de imágenes.
- > Fase de preprocesamiento.
- Modelo retrieval.

1.8. MÉTRICAS DE CALIDAD AL SOFTWARE

1.8.1. Modelo de Calidad del Software ISO ISO/IEC 25000

Los aspectos más importantes en el desarrollo de software son la calidad del producto y del proceso. ISO/IEC 25010, proporciona una guía para el uso de las nuevas series de estándares internacionales, llamados Requisitos y Evaluación de Calidad de Productos de Software (SQuaRE). Constituyen una serie de normas basadas en la ISO/IEC 9126 y en la ISO/IEC 14598, y su objetivo principal es guiar el desarrollo de los productos de software con la especificación y evaluación de requisitos de calidad.

La familia ISO/IEC 2501n está orientada al producto software, permitiendo definir el modelo de calidad y el proceso a seguir para evaluar dicho producto, se encuentra compuesta por cinco divisiones. (Portal ISO/25000, 2019)

 ISO/IEC 25010 - System and software quality models: describe el modelo de calidad para el producto software y para la calidad en uso. Esta Norma presenta las características y subcaracterísticas de calidad frente a las cuales evaluar el producto software. ISO/IEC 25012 - Data Quality model: define un modelo general para la calidad de los datos, aplicable a aquellos datos que se encuentran almacenados de manera estructurada y forman parte de un Sistema de Información.

1.9. ESTIMACIÓN DE COSTOS

1.9.1. Método COSMIC

COSMIC es un método de análisis de puntos de función de segunda generación, en el cual se determina el tamaño funcional del software a partir del número de interacciones entre los procesos funcionales. Tiene la ventaja de no establecer límites arbitrarios al tamaño funcional, así puede medir componentes de software muy grandes o pequeños. Adicionalmente, está basado en el desglose funcional de los componentes de software, alineado con las prácticas de Ingeniería de software.

1.9.1.1. Fases

- Fase 1: Estrategia de medición. Determina que es lo que se va a medir.
- Fase 2: Mapeo. Se realiza para crear un modelo COSMIC de los requerimientos funcionales de usuario.
- Fase 3: Medición. La unidad de medida del método COSMIC es el "punto de función COSMIC" (CFP). La medición de la nueva pieza de software se realiza identificando todos los movimientos de datos, es decir todas las entradas, salidas, lecturas y escrituras de cada proceso funcional. Luego sumándolas todas.

1.9.1.2. Etapas

- 1. Establecer la frontera entre el sistema y los actores con los que interactúa.
- 2. Identificar los procesos funcionales que los actores reciben del sistema.
- Para cada proceso funcional, identificar los movimientos de datos que genera cada usuario.

1.10. HERRAMIENTAS

1.10.1. Hardware

1. **RAM 16 Gb**. La memoria de acceso aleatorio (Random Access Memory, RAM) ayuda a que el ordenador gestione los datos de las aplicaciones en funcionamiento,

- la cantidad que tengas afecta directamente al rendimiento de tu dispositivo. Cuanta más RAM se tenga más aplicaciones se podrán dirigir a la vez, en caso de que no se tenga suficiente memoria el ordenador puede ir lento.
- 2. Procesador Amd A10-9600p Radeon R5. (Central Processing Unit) es básicamente el cerebro del equipo, la unidad de procesamiento que está encargada de interpretar las instrucciones de un hardware haciendo uso de distintas operaciones aritméticas y matemáticas. Los dos procesadores más conocidos y más utilizados son Intel y AMD.

1.10.2. **Software**

SERVIDOR VPS. Un servidor privado virtual (VPS) es una máquina que aloja todo el software y los datos necesarios para ejecutar una aplicación o un sitio web. Se llama virtual porque solo consume una parte de los recursos físicos subyacentes del servidor, administrados por un proveedor externo

LENGUAJES DE PROGRAMACIÓN

 JavaScript. Es un lenguaje de programación de secuencias de comandos que te permiten crear contenido interactivo para tu sitio web, creado por Brendan Eich con el nombre de LiveScript.

SOFTWARE DE APOYO

- Qgis. Es un sistema de información Geográfica (SIG) de código abierto para plataformas GNU/Linux, Unix, Mac OS y Microsoft Windows. Que permite manejar datos de formato raster y vectoriales así como también bases de datos.
- **Google Earth Engine**. Es una plataforma en la nube que permite realizar análisis científico y visualización de datos geoespaciales a escala petabyte (PB).
- Geoserver. Es un servidor de mapas open source, escrito en Java, de código abierto que permite el intercambio de datos geoespaciales mediante estándares OGC.
- Visual Studio Code (VS Code) es un editor de código fuente desarrollado por Microsoft.

• **Filezilla**. Es una aplicación para la transferencia de archivos por FTP. Es gratuita y de código abierto, según los términos de la Licencia pública general de GNU.

1.11. LÍMITES Y ALCANCES

1.11.1. Limites

No se podrán realizar modificaciones de las imágenes satelitales captadas mediante Google Earth Engine de cada año.

Para la manipulación de la información del crecimiento del municipio solo tendrán acceso el personal autorizado de la municipalidad, alcaldía, para los cuales estará disponible.

1.11.2. **Alcances**

- Módulo de información en el cual se mostrará la historia, información, datos relevantes como ser límites municipales, flora y fauna del municipio.
- Modulo Imágenes Satelitales, se visualiza mediante un calendario imágenes satelitales captadas mediante Google Earth Engine desde hace años atrás hasta la actualidad
- Módulo de análisis forestal se presenta mediante un histograma la evolución de la cobertura forestal en distintas coordenadas geográficas.
- Módulo de TimeLapse, mediante un video generado se muestra la reconstrucción dinámica del cambio de cobertura desde hace años atrás hasta la actualidad.

1.12. APORTES

El modelo de análisis forestal es un modelo que no solamente brindará información, datos, imágenes satelitales necesarias para realizar análisis de forma continua, sino que también permitirá estudiar el comportamiento de la vegetación en el Municipio de Viacha desde hace años atrás hasta la actualidad. Beneficiará directamente a la población en general y autoridades del Municipio dado que se desarrollará en la plataforma Google Earth Engine que está orientado a la investigación científica.

CAPÍTULO II MARCO TEÓRICO

2. MARCO TEÓRICO

2.1. INTRODUCCIÓN

El presente trabajo de investigación se la realiza con el objetivo de diseñar un Modelo de análisis forestal en base a Google Earth Engine aplicado al Gobierno Autónomo Municipal de Viacha, que brinde datos e información respecto al entorno ambiental.

En este capítulo se inicia con la recopilación de toda la información posible respecto a los conceptos geográficos y de computación utilizados en este tipo de investigación. Según Kilbourne (2006), "El ambiente es considerado como una condición necesaria para el bienestar de los individuos y las sociedades, pero su estudio rara vez se extiende más allá de esta evidente proposición". Se describirá los conceptos y fases referentes a la metodología, métricas de calidad, estimación de costos, seguridad y pruebas al software que se usará como línea referencial en el proceso de desarrollo del modelo. Con el avance de la tecnología surgieron nuevas herramientas SIG en este caso Google Earth Engine que serán clave en el desarrollo del Modelo de análisis forestal ya que contienen la información necesaria para lograr nuestro objetivo.

La información de este capítulo ayudara al desarrollo del modelo brindando las metodologías y herramientas correspondientes para el proceso de elaboración.

2.2. INFORMACIÓN

Es un conjunto de datos con un significado, o sea, que reduce la incertidumbre o que aumenta el conocimiento de algo. En verdad, la información es un mensaje con significado en un determinado contexto, disponible para uso inmediato y que proporciona orientación a las acciones por el hecho de reducir el margen de incertidumbre con respecto a nuestras decisiones. (Chiavenato, 2006).

La información "consiste en datos seleccionados y ordenados con un propósito específico". (Czinkota y Kotabe, 2001).

2.3. MODELO

El modelo es la representación de un objeto real que el humano concibe en el plano abstracto para caracterizarlo y poder sobre esa base, dar solución a un problema planteado, es decir, satisfacer una necesidad. (Trinchet et al. 2014). Por su parte Martinez, L. (2012) define que un modelo es una representación de un objeto, sistema o idea, de forma diferente al de la entidad misma. El propósito de los modelos es ayudarnos a explicar, entender o mejorar un sistema. Un modelo de un objeto puede ser una réplica exacta de éste o una abstracción de las propiedades dominantes del objeto.

2.4. ANÁLISIS

Diccionario de la Real Academia Española (edición de 1992) define el término «análisis» primeramente como «distinción y separación de las partes de un todo hasta llegar a conocer sus principios o elementos», posteriormente, y en su segunda acepción encontramos que es el «examen que se hace de una obra, de un escrito o de cualquier realidad susceptible de estudio intelectual».

El análisis de la información, es un proceso cíclico de selección, categorización, comparación, validación e interpretación inserto en todas las fases de investigación que nos permite mejorar la comprensión de un fenómeno de singular interés (Sandin, Documento complementario, 2003).

2.5. ANÁLISIS DE DATOS

El análisis de datos es la ciencia que se encarga de examinar un conjunto de datos con el propósito de sacar conclusiones sobre la información para poder tomar decisiones, o simplemente ampliar los conocimientos sobre diversos temas (QuestionPro, 2021).

El análisis de datos consiste en la realización de las operaciones a las que el investigador someterá los datos con la finalidad de alcanzar los objetivos del estudio. Todas estas operaciones no pueden definirse de antemano de manera rígida. La recolección de datos y ciertos análisis preliminares pueden revelar problemas y dificultades que des actualizarán la planificación inicial del análisis de los datos. Sin embargo es importante planificar los principales aspectos del plan de análisis en

función de la verificación de cada una de las hipótesis formuladas ya que estas definiciones condicionarán a su vez la fase de recolección de datos. (Sites.Google, s.f.).

2.5.1. Tipos de análisis de datos

- Cualitativo. los datos son presentados de manera verbal o gráfica, responden a preguntas como "por qué", "que" o "como".
- **Cuantitativo.** los datos son presentados de forma numérica, en términos de escalas de medición y se extienden para una mayor manipulación estadística.

2.6. RECURSOS FORESTALES

Los recursos forestales son aquellos elementos que provienen de los bosques y pueden ser utilizados para satisfacer alguna necesidad humana (Westreicher, G. 2020). Por su parte Marconetto, M. (2008) define a los recursos forestales a todas aquellas materias naturales de origen vegetal que la sociedad obtiene de las formaciones forestales para satisfacer sus necesidades de alimento, materia prima y energía.

2.6.1. Tipos de recursos forestales

Los recursos forestales se dividen en dos tipos: maderables y no maderables (Bordino, 2021).

- Recursos forestales maderables. Es el producto que se obtiene de los árboles.
- Recursos forestales no maderables. Son elementos distintos a la madera y que puede satisfacer alguna necesidad humana.
 - Medicinales: existen muchas especies vegetales que llegan a tener propiedades curativas, ya sea para distintas enfermedades y dolores como ser, dolores de cabeza, ulceras, heridas.
 - Alimenticias: pueden ofrecernos frutos, raíces, tubérculos, hongos, que también son alimentos para los animales.

- **Industriales:** los extractos de las especies vegetales pueden ser utilizadas para procesos industriales.
- Obtención de fibras: a partir de los tallos, troncos y raíces de plantas, se puede obtener fibras.

2.7. FORESTACIÓN

La forestación es la plantación de árboles en la búsqueda de equilibrar el acelerado proceso de deforestación que se vive en los diferentes países, por la necesidad de lograr un desarrollo sostenible, desde la economía en el incremento de las fronteras agrícolas y el pastoreo, como actividad económica, para mejorar la calidad de vida de las comunidades, (Pabón, s.f.)

La forestación se define aquí como el establecimiento de cobertura forestal en forma de plantaciones o mediante la regeneración natural en zonas que en el pasado tuvieron, o no, bosques. Los argumentos más comunes que han respaldado la forestación son para producir madera, detener y revertir la degradación del suelo, proteger la biodiversidad, y mejorar los servicios hidrológicos. Se incluye con frecuencia en portafolios de soluciones basadas en la naturaleza o iniciativas de infraestructura verde que recientemente están adquiriendo importancia en la gestión de cuencas y en la adaptación al cambio climático en Latinoamérica (Bonnesoeur, et al. 2019).

2.7.1. Tipos de Forestación

- Plantación forestal comercial: "Una plantación forestal comercial es el establecimiento y manejo de especies forestales en terrenos de uso agropecuario o terrenos que han perdido su vegetación forestal natural". (Comisión Nacional Forestal, 2017, párr.1).
- Agrosilvicultura y sistemas agrosilvopastoriles:
- La agrosilvicultura se combina los cultivos agrícolas y la ganadería, donde hubo o
 no previamente un bosque, con cultivos de granos leguminosos o maíz.
- II. Agrosilvopastoriles. Bajo el nombre de sistemas agrosilvopastoriles (SASP) se agrupa un conjunto de técnicas de uso de la tierra que implica la combinación o

asociación deliberada de un componente leñoso (forestal o frutal) con ganadería y/o cultivos en el mismo terreno (Nair, 1985).

- Bosque artificial con fines ambientales y recreativos. Son creadas y plantadas por el hombre mediante procedimientos de plantación adaptadas a las condiciones del lugar.
- Rehabilitación de bosques. se busca volver un ambiente dañado, degradado a su condición natural con el fin de recuperar, mantener o mejorar el ambiente.
- Restauración de bosques. Es el conjunto de acciones que se llevan a cabo para recuperar la salud, estructura y función de los ecosistemas (Secretaría de Medio Ambiente y Recursos Naturales, 2018).

2.8. REFORESTACIÓN

Según Hernández (2010), la reforestación es definida como: "un conjunto de actividades que comprende la planeación, la operación, el control y la supervisión de todos los procesos involucrados en la plantación de árboles" (p. 11).

Mendoza (2017), en su trabajo de investigación plantea que: la reforestación hace relación a la siembra de árboles en terrenos con aptitud forestal que en el pasado albergaron bosques los cuales desaparecieron por diversos motivos y es altamente beneficiosa por los bienes que se producen y los servicios ambientales que presta (p. 16).

2.8.1. Beneficios de la Reforestación

- Mejora la calidad del aire.
- Forman suelos fértiles.
- Previene la erosión del suelo.
- Protege las especies y mejora su hábitat.
- Mitiga el cambio climático.

2.8.2. Fases de la Reforestación

La reforestación es un proceso que se realiza a lo largo del año e involucra los siguientes pasos:

1. Planeación.

- ✓ Se debe determinar el objetivo de la reforestación ¿Por qué reforestar?
- ✓ Se elige el sitio a reforestar.
- ✓ Se identifica el tipo de suelo que generalmente son seis tipos: arenoso, arcilloso, limoso, margoso, gredoso y pantanoso.
- ✓ Se debe seleccionar las especies a utilizar.
- ✓ Se identifica la época del año en la cual se realizará la plantación.

2. Preparación del sitio

- ✓ Marcar y trazar la zona a plantar entre cepa y cepa.
- ✓ Cavar los agujeros donde se desea plantar.
- ✓ Transportación de la planta a sitio a reforestar.

3. Plantación

- ✓ Se afloja la tierra para el desarrollo de las raíces.
- ✓ Se separa la tierra fértil de la superficie y la tierra más profunda.
- ✓ Colocar una capa de tierra fértil en el fondo de la cepa.
- ✓ Sacar el árbol del contenedor.
- ✓ Se pone la planta en el centro de la cepa y cúbrela con tierra primeramente la tierra fértil y posteriormente la demás tierra.
- ✓ Cubre completamente el cepellón del árbol con tierra.
- ✓ Se verifica que el árbol este a la misma altura del tallo.
- ✓ Se aprieta fuertemente la tierra.

4. Seguimiento y Mantenimiento

Una vez terminando de plantar se requiere de cuidados, seguimiento y mantenimiento constante de la plantación.

✓ Desyerbar: consiste en quitar hierbas que son competencia ya que puede quitarle nutrientes, aqua y luz lo cual afectaría en el crecimiento de la planta.

- ✓ Riego: se recomienda un riego por goteos ya que regando por la noche puede llegar a producir hongos y el exceso de riego puede provocar que la planta llegue a podrirse.
- ✓ Plagas y enfermedades: son principales causas de la disminución de bosques.

2.9. DEFORESTACIÓN

Según Wunder (2001), "El concepto de deforestación está relacionado con varios términos no totalmente delimitados (pérdida de bosque, fragmentación, conversión o degradación). Por este motivo, el autor categoriza los diferentes enfoques predominantes sobre las definiciones de deforestación en visiones amplia y estrecha" (p.9).

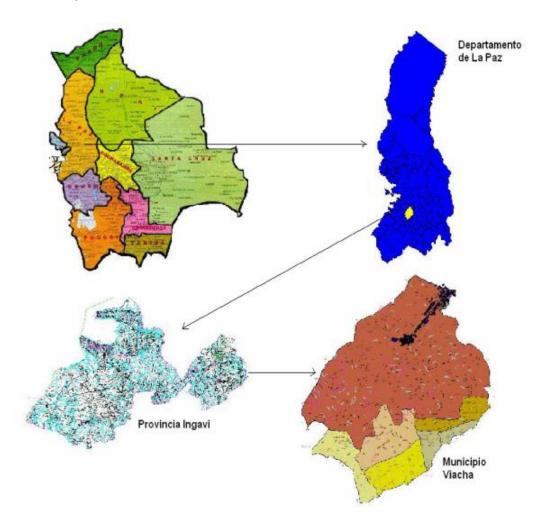
La transformación del bosque en otro uso de la tierra o reducción, a largo plazo, de la cubierta de copa por debajo del umbral mínimo del 10 por cierto. Es un cambio permanente en la cobertura y uso de la tierra producto de la actividad humana (Organización de las Naciones Unidas para la Agricultura y la Alimentación [FAO], 2006).

Actualmente, las principales causas directas de la deforestación en Bolivia pueden agruparse en tres tipos generalizados de uso del suelo: la agricultura mecanizada (referida a la producción intensiva de cultivos industriales anuales, principalmente soya (o soja), caña de azúcar y arroz), la agricultura a pequeña escala (que incluye diferentes formas de producción manual, principalmente se cultivan arroz, maíz y cultivos perennes como el plátano) y la ganadería en pastos cultivados (la cual lleva al reemplazo de los bosques por pastizales, mayormente para la producción de carne para el mercado nacional). Estas categorías han sido usadas en Müller et al. (2012).

Se estima que en Bolivia la deforestación está provocando la pérdida de cientos de miles de hectáreas de bosque por año. Las causas de esta deforestación son muy complejas y varían entre las distintas regiones del país. Sin embargo, se sabe que la ampliación de la frontera agrícola constituye la principal causa de deforestación (Pacheco, 2004).

2.9.1. Causas de la Deforestación

- ✓ Convertir el uso de suelo en campos de cultivo.
- ✓ Tala y quema de árboles con fines comerciales.
- ✓ Incendios forestales.
- ✓ Crecimiento urbano.


2.10. MUNICIPIO DE VIACHA.

El municipio de Viacha, fue creado el 18 de noviembre de 1841. Tiene una extensión de 5410 km2. Su topografía tiene un relieve ondulado, con presencia de serranías. Los principales ríos son el Desaguadero, el Chama, el Jachajahuira y el Pallina. El clima es frio, tiene temperatura promedio de 8°C. Limita al norte con el municipio de Laja y El Alto; al este con los municipios de El Alto, Achocalla, Calamarca, Collana; al oeste con los municipios de Comanche, Santiago de Machaca, Laja; al sur con los municipios de Collana y Comanche. Su principal actividad es la ganadería, entre las que más se destacan son el vacuno, ovino, porcino y camélidos, además se encuentra la Fábrica de Cemento SOBOCE. Además se encuentra la estación de ferrobús, el cual es un bus adaptado a las vías del ferrocarril, de donde parte hacia otros municipios (Gobierno Autónomo Departamental de La Paz, s.f.).

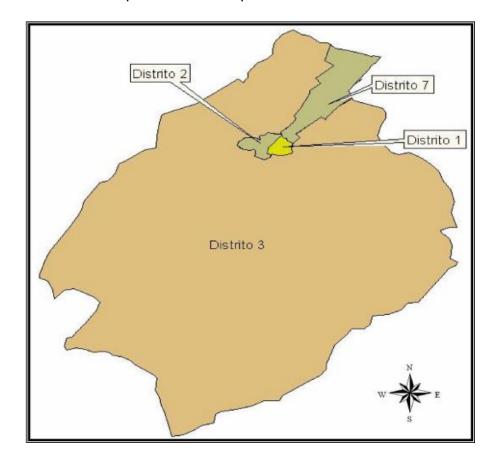
El Municipio de Viacha es la capital de la Provincia Ingavi del Departamento de La Paz. Posee una superficie de 1.086 km² y una altura de 3.857 msnm. Registra una población de 80.724 habitantes distribuidas y divididas en cinco distritos: cuatro distritos urbanos (1, 2, 6 y 7) y un municipio rural (3). Este municipio limita con tres municipios de la RMLP (Mecapaca, Achocalla y Laja) y se encuentra a 25 km² de la ciudad de La Paz y a 18 km² de la ciudad de El Alto.

El Municipio de Viacha presenta dos pisos ecológicos, una zona de relieve montañosa (38%) y una de altiplano y llano (62%). La zona de relieve montañosa presenta serranías y montañas que poseen altitudes de hasta 4.100m, conteniendo algunos ríos que ocasionan una erosión hídrica en época de lluvias. Región presenta llanuras secas y húmedas La zona de las llanuras se encuentra a una altitud que llega hasta 3.930m, esta región presenta llanuras secas y húmedas (Terán et al., 2020).

Figura 1 Mapa De La República De Bolivia, Departamento De La Paz, Provincia Ingavi Y Municipio De Viacha

Nota: Tomado de Gobierno Municipal De Viacha 2007.

Tabla 2 Límites territoriales del municipio de Viacha.


Puntos	Secciones	municipales	Provincias
cardinales	limítrofes		
Al Este	5ta. Sección municip	al (El Alto)	Provincia Murillo
	5ta. Sección municip	al (Achocalla)	Provincia Murillo
	5ta. Sección municip	al (Calamarca)	Provincia Aroma
	5ta. Sección municip	al (Collana)	Provincia Aroma
Al Oeste	5ta. Sección municip	al (Comanche)	Provincia Pacajes

	5ta. Seco	ción municipal	(S. de	Provincia Ingavi	
	Machaca)				
	5ta. Secció	5ta. Sección municipal (Laja) Provincia Los Andes			
Al Norte	5ta. Sección municipal (Laja)			Provincia Los Andes	
	5ta. Secció	ón municipal (El	Alto)	Provincia Murillo	
Al Sur	5ta. Secció	ón municipal (Co	ollana)	Provincia Aroma	
	5ta. Secció	ón municipal (Co	manche)	Provincia Pacajes	

Nota: Municipios vecinos de Viacha. Tomado de Gobierno Municipal Viacha 2007.

Actualmente el municipio de Viacha, cuenta con 4 distritos (1, 2, 3 y 7) que mantienen el orden distrital establecido en el año 1998, cada uno de ellos cuenta con un Sub Alcalde.

Figura 2: Distritos municipales del Municipio de Viacha.

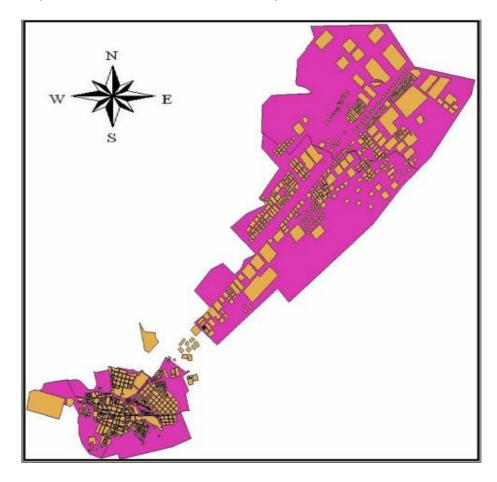

Nota: Tomado de Gobierno Municipal Viacha 2007.

Tabla 3 Distritos municipales de Viacha, antes y después de su división.

Distritos	1998	2005
Distritos 1 Zona Este	Si	Si
Distritos 2 Zona Oeste	Si	Si
Distrito 3 Marka Viacha	Si	Si
Distrito 4 Jesus de Machaca	Si	No
Distrito 5 San Andres de Machaca	Si	No
Distrito 6 Parcial Arriba	Si	No
Distrito 7 Zona Norte	Si	Si

Nota: Municipios vecinos de Viacha. Tomado de Gobierno Municipal Viacha 2007.

Figura 3: Superficie De Área Residencial Ocupada.

Nota: Municipio de Viacha con viviendas habitadas en el año 2007. Tomado de Gobierno Municipal Viacha 2007.

El área urbana del municipio de Viacha cuenta con una superficie aproximada de 50.01 km² definidos para los distritos 1, 2 y 7 el mismo que es distribuido de la siguiente manera:

Tabla 4 Distritos y cantidad de superficie en Km2, que ocupan.

DISTRITOS	SUPERFICIES	SUPERFICIE	ASUPERFICIE NETA
	EN KM ²	OCUPADOS	DE OCUPACIÓN
		POR EQUIPAMIENTOS	RESIDENCIAL
		KM ²	KM ²
Distritos 1	5,34	2,14	3,20
Distritos 2	6,93	2,77	4,16
Distritos 7	37,74	15,10	22,64
TOTAL	50,01		
	100%		

Nota: El distrito 7 hasta ese entonces fue el distrito más habitado como sigue hasta la actualidad. Tomado de Gobierno Municipal Viacha 2007.

Figura 4: Gráfico de distritos

Nota: Tomado de Gobierno Municipal Viacha 2007.

2.10.1. Vegetación del municipio de Viacha

El Municipio de Viacha no cuenta con abundantes especies de flora ya que presenta dos pisos ecológicos:

- Zona relieve montañosa 38%.
- Zona de altiplano y llano 62%.

Las llanuras húmedas se caracterizan por suelos con bastante fertilidad donde se desarrolla la actividad ganadera lechera y en algunas comunidades la producción de forraje como cebada y avena. Las llanuras secas presentan abundante vegetación compuesta por pastizales y matorrales y es apta para la agricultura y ganadería.

Existen algunas variedades de flora como ser:

Tabla 5 Vegetación del Municipio de Viacha.

NOMBRE	DESCRIPCIÓN
Thola	La thola es una planta arbustiva alto andina muy utilizada
	como planta medicinal, como combustible ecológico y
	forraje para animales de pastoreo por lo que representa un
	gran potencial económico.
Waraco	Es un cactus típico de los Andes, Ocurre en pastizales de
	altura requiere de mucha luz y algo de sol directo.
lchu	Es un pasto del altiplano andino empleado para la
	construcción de casas, forraje de animales camélidos
	altiplánicos.
Yareta	Es un arbusto nativo de las regiones altiplánicas, se adapta
	a distintos cambios climatológicos. Se dice que permite
	depurar el organismo y aliviar problemas gastrointestinales,
	calmar dolores dentales y puede regular los índices de
	glicemia.
Kiswara	Es un árbol que puede llegar a medir 4 a 6 metros, pueden
	soportar temperaturas extremadamente bajas, sirve para

	aliviar problemas hepáticos, de próstata, diabetes, cistitis,
	reumatismo, artritis, curar resfríos y cicatrizar heridas.
Pajonal	Son pastizales naturales que se encuentran en valles y
	montañas, son vitales para conservación del agua.
Chi'lligua	Es una paja suave, con la cual se puede elaborar cestería.
	Es característica del altiplano y crecen con preferencia en
	lugares húmedos y cercanos a los ríos.
	Indicador de las lluvias y la producción.
Suphu Thola	Es un arbusto resinoso, lignificado, erecto, ramoso, se usa
	como leña y arbusto medicinal.
Totora	Es una planta acuática, sirve de forraje para los animales,
	para la fabricación de embarcaciones, casas y entre otros,
	su consumo es beneficioso para prevenir a prevenir el
	cáncer de colon y el estreñimiento.

2.11. GOOGLE EARTH ENGINE

Google Earth Engine (o simplemente Earth Engine), es una plataforma en la nube para realizar análisis científicos y visualización de datos geoespaciales. Google lo define como "¡La plataforma de procesamiento geoespacial basado en la nube más avanzada del mundo! "(Morales, s.f.).

Google Earth Engine es un catálogo de varios petabytes de imágenes de satélite y conjunto de datos geoespaciales, que permite al usuario ver, manipular, crear y editar datos espaciales rápido y fácil. Sin necesidad de grandes capacidades computacionales. Incorpora una amplia gama de herramientas de manipulación espacial que permite a científicos, investigadores y desarrolladores detectar cambios, mapas de tendencias y cuantificar diferencias sobre la superficie de la Tierra a una escala global y continental. Todo con la potencia de procesamiento en la Nube (del inglés, "cloud computing") (Rodríguez, s.f.).

2.11.1. Plataforma.

Es un concepto con varios usos. Por lo general se trata de una base que se halla a una cierta altura o de aquello que brinda un soporte, ya sea físico o simbólico. Las plataformas en la nube evolucionan y se añaden nuevas capacidades. No sólo nuevas capacidades, sino también nuevas posibilidades y nuevas oportunidades de prestación de servicios. (Pérez y Gardey, 2013).

- Nube pública, donde el desarrollador o la empresa controlan la implementación del software utilizando las opciones de configuración proporcionadas. El proveedor de servicios administra las redes, los servidores, el almacenamiento y el sistema operativo que alojarán la aplicación que se está desarrollando.
- Nube privada, donde el desarrollador maneja la construcción de la aplicación detrás de un firewall. El firewall crea un entorno privado para que las empresas implementen aplicaciones mientras siguen utilizando la infraestructura del proveedor de servicios.
- Nube híbrida, donde las empresas utilizan una combinación de hardware privado,
 público y local para gestionar la creación y la implementación de aplicaciones.
- Nube comunitaria, define este modelo como aquel que se organiza con la finalidad de servir a una función o propósito común las cuales son administradas por las organizaciones constituyentes o terceras partes.
- Modelo Multinube, Este tipo de nube es un enfoque en el que se combina más de un servicio de nube formada, por lo menos, de dos proveedores de nube pública o privada. Surge por una mayor expansión de las organizaciones, de manera que las empresas, al aumentar sus servicios, obtienen un mayor número de clientes que, a su vez, demandan nuevas aplicaciones que satisfacen sus necesidades.

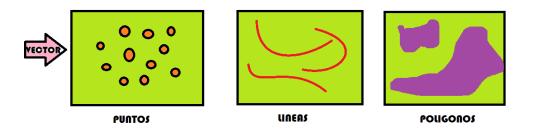
2.11.2. Geoespacial

Los datos geoespaciales son datos relativos a lugares concretos de la superficie de la Tierra, incluida la información 3D. Un sistema de información geográfica (SIG) es un marco que proporciona la capacidad de capturar y analizar datos espaciales y geográficos. El análisis geoespacial incluye la recopilación, visualización,

manipulación y análisis de imágenes, el Sistema de Posicionamiento Global (GPS), las imágenes de satélite y los datos históricos.

Entre las aplicaciones del análisis geoespacial figuran: la modelización del cambio climático, la vigilancia meteorológica y el seguimiento de la distribución de la población humana y animal, y la planificación de sistemas de radiocomunicaciones. Las aplicaciones del SIG se utilizan para predecir, gestionar y conocer muchos fenómenos que afectan a la Tierra, sus sistemas y sus habitantes. (Unión Internacional de Telecomunicaciones [UIT], 2020).

Los datos geoespaciales son datos basados en el tiempo que están relacionados con una ubicación específica de la superficie de la Tierra. Pueden proporcionar información sobre las relaciones entre variables y revelar patrones y tendencias (Environmental Intelligence Suite [IBM], s.f.).

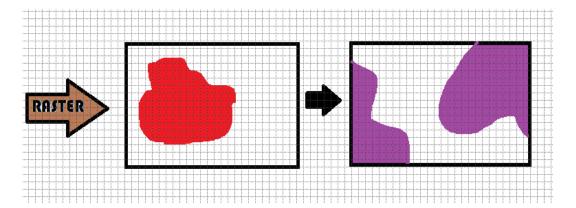

2.11.3. Datos geográficos.

También son conocidos como información geográfica o datos geoespaciales, que se refieren a la información relacionada con objetos o elementos presentes en un espacio u horizonte geográfico. Existen dos tipos básicos de datos de ubicación: datos de vector y datos de ráster.

2.11.3.1. Vector

Esta forma utiliza puntos, líneas y polígonos para representar características tales como ciudades, caminos, montañas y cuerpos de agua que se asignan y almacenan en sistemas de información geográfica (SIG).

Figura 5: Datos vectoriales



Nota: Se dividen en tres tipos puntos, líneas y polígonos.

2.11.3.2. Ráster.

Se caracterizan por la existencia de una red formada por celdas o cuadrículas, más comúnmente conocidas como píxel, en la que cada cuadrícula o píxel presenta una cualidad o propiedad espacial (color, altitud, etc).

Figura 6: Datos Raster

2.11.4. Imagen Satelital.

La imagen satelital es una fotografía tomada por un satélite artificial, que muestra la geografía de un territorio específico, ya sea una ciudad, un país o un cuerpo celeste, o también algún espectro determinado de ondas electromagnéticas, lo que se usa en la meteorología para determinar los fenómenos de tiempo significativos. (Universidad Continental, 2015).

Una imagen satelital representa una visualización captada desde el espacio por medio de un sensor montado en un satélite artificial. Estos sensores recopilan información reflejada por la superficie de la tierra que luego se envía a un centro de control y que, cuando se procesa convenientemente, proporciona información valiosa sobre las características del área representada. (Definicionyque.es., 2018).

El uso de las imágenes satelitales se aplica en:

- El espionaje militar.
- El monitoreo del cambio climático y de incendios e inundaciones.
- El seguimiento de sequías y la determinación de uso del suelo.
- La cartografía del flujo mundial del petróleo y la vigilancia de derrames del producto.
- La detección de floraciones de algas en el océano.
- El seguimiento de huracanes y tifones, y de la temperatura de la superficie.
- Las evaluaciones multiespectrales de vegetación (AXESS Networks, s.f.).

2.11.5. Colecciones de datos e imágenes de Google Earth Engine.

Earth Engine es un excelente repositorio que contiene imágenes históricas terrestres desde hace más de 40 años. Con las cuales es posible acceder a archivos DEM, imágenes satélites, variables ambientales, usos del suelo y otros datos científicos, las imágenes son recopiladas y actualizadas diariamente esto ayuda a los usuarios a buscar y descubrir conjuntos de datos públicos de observación de la Tierra. Se puede encontrar imágenes con diferentes temáticas como ser:

- Datos climáticos.
- Modelos Digitales de Elevación.
- Imágenes satelitales.
- Datos demográficos.
- Variables morfológicas.
- Datos hidrológicos.
- Mapas de usos del suelo.

2.11.5.1. Lansadt

El USGS Servicio Geológico de Estados Unidos (United States Geological Survey) y Nasa Administración Nacional de Aeronáutica y el Espacio (National Aeronautics and Space Administration) han estado observando la Tierra continuamente desde 1972 hasta la actualidad, las imágenes Lansadt toman imágenes de toda la superficie de la Tierra con una resolución de 30 metros una vez cada dos semanas, inluyen datos multiespectrales y térmicos. El USGS produce datos en 3 categorias para cada satélite:

- Nivel 1 (T1): datos que cumplen con los requisitos de calidad geométrica y radiométrica.
- Nivel 2 (T2): datos que no cumplen los requisitos del nivel 1.
- Tiempo real (RT): datos que aún no han sido evaluados (lleva hasta un mes).

Tabla 6 Repertorio Landsat

Landsat 1:	Julio 1972-Enero 1978
Landsat 2:	Enero 1975-Febrero 1982
Landsat 3:	Marzo 1978-Marzo 1983
Landsat 4:	Julio 1982-Diciembre 1993
Landsat 5:	Enero 1984-Enero 2013
Landsat 7:	Enero 1999-Actualidad
Landsat 8:	Abril 2013-Actualidad

Nota: Imágenes captadas desde 1972 hasta la actualidad en diferentes versiones. Tomado de Matellanes, 22 de febrero del 2020.

Las misiones Landsat 7 y Landsat 8 son las actualmente vigentes para la descarga diaria de imágenes. La adquisición de sus imágenes, o resolución temporal, es de 16 días. Por tanto, dispondrás de una nueva imagen satélite actualizada para la misma zona de trabajo cada dos semanas aproximadamente

2.11.5.2. Centinela

El Programa Copernicus es una iniciativa ambiciosa encabezada por la Comisión Europea en colaboración con la Agencia Espacial Europea (ESA). Los Sentinels son una constelación de satélites desarrollados por la ESA para hacer operativo el

programa Copernicus, que incluyen imágenes de radar para todo clima de Sentinel-1A y 1B, imágenes ópticas de alta resolución de Sentinel-2A y 2B, datos oceánicos y terrestres adecuados para fines ambientales y monitoreo climático de Sentinel-3, así como datos de calidad del aire de Sentinel-5P. Las imágenes habituales de Sentinel son proporcionadas bajo dos niveles:

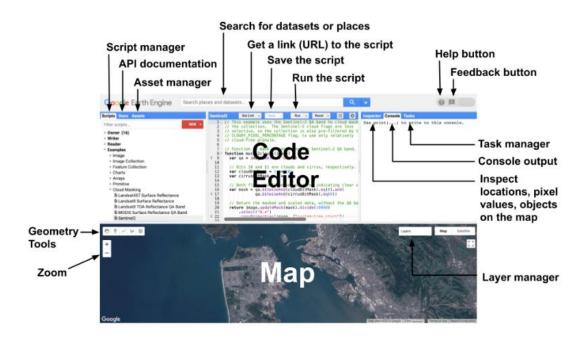
- Sentinel 2 Nivel 1C: imágenes corregidas atmosféricamente por debajo de la atmósfera (TOA). Son las que, por despiste o de forma convencional, descargas o se muestran en múltiples plataformas.
- Sentinel 2 Nivel 2A: imágenes corregidas atmosféricamente a nivel del suelo (BOA). Son las que te ayudarán a mejorar el aspecto visual y jugar con valores libres de la influencia de la atmósfera.

Figura 7: Bandas Sentinel

	SENTINEL 2		
	Longitud de onda (µm)	Resolución (m)	
Banda 1 - Aerosol	0,43 - 0,45	60	
Banda 2 - Blue	0,45 - 0,52	10	
Banda 3 - Green	0,54 - 0,57	10	
Banda 4 - Red	0,65 - 0,68	10	
Banda 5 - Red edge 1	0,69 - 0,71	20	
Banda 6 - Red edge 2	0,73 - 0,74	20	
Banda 7 - Red edge 3	0,77 - 0,79	20	
Banda 8 - Near Infrared (NIR) 1	0,78 - 0,90	10	
Banda 8A - Near Infrared (NIR) 2	0,85 - 0,87	20	
Banda 9 – Water vapour	0,93 - 0,95	60	
Banda 10 - Cirrus	1,36 - 1,39	60	
Banda 11 - SWIR 1	1,56 - 1,65	20	
Banda 12 - SWIR 2	2,10 - 2,28	20	

Nota: Tomado de (Matellanes, 21 de diciembre del 2019).

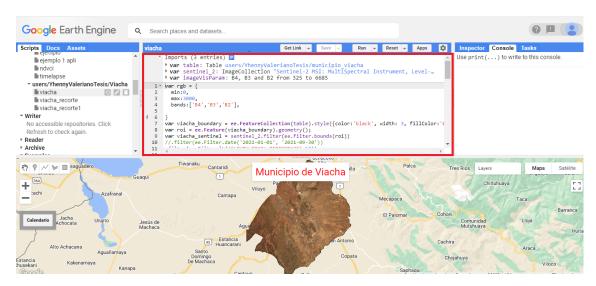
2.11.5.3. Modis


Los satélites gemelos, MODIS Terra y Aqua, recopilan 36 bandas individuales para medir las condiciones de la superficie. Estos dos satélites han estado escaneando

continuamente el globo desde su puesta en órbita en 1999 y 2002 respectivamente. Los satélites MODIS se diseñaron de manera que pueden captar imágenes de prácticamente todo el globo una vez al día, y la información sobre la capa de nieve tiene una resolución espacial de 500 m2. Este tiempo de revisión diario es mucho más apropiado para mapear eventos efímeros como la capa de nieve en comparación con la familia de satélites Landsat que, si bien tienen una resolución espacial más alta, poseen una resolución temporal de 16 días.

2.11.6. Editor de código

Code Editor es un entorno de desarrollo web para la API de JavaScript de Earth Engine, que permite visualizar, analizar, mapear, graficar imágenes satelitales del Data Catalog, incluso puede usarse para procesar videos a partir del inmenso catálogo de imágenes satelitales. El Editor de código tiene los siguientes elementos:


Figura 8: Code Editor

Nota: Tomado de Google Motor de Tierra, s.f.

• El panel central proporciona un editor de código JavaScript.

Figura 9: Panel Central

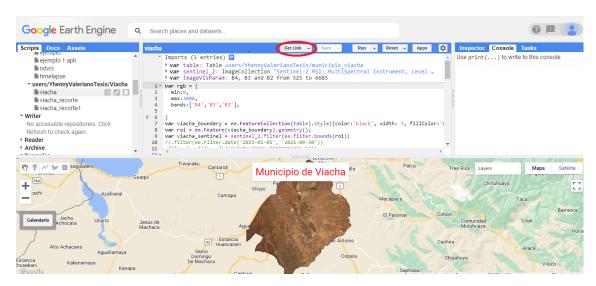

 Encima del editor hay botones para guardar el script actual, ejecutarlo y borrar el mapa.

Figura 10: Panel de herramientas

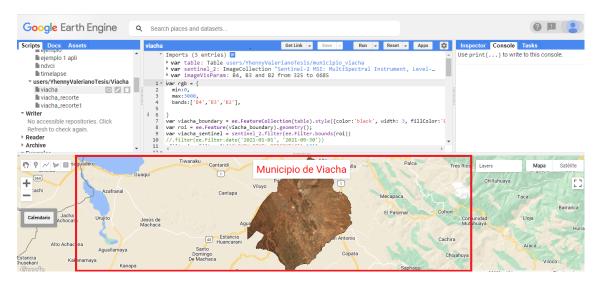

• El botón Get Link genera una URL única para el script en la barra de direcciones.

Figura 11: Get Link

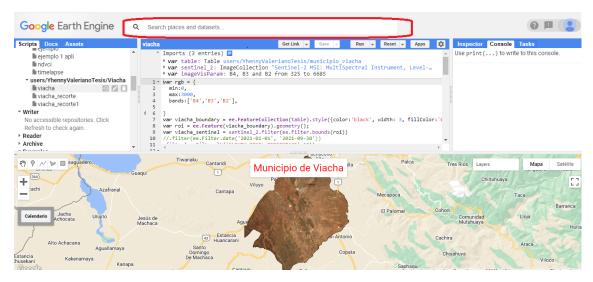

• El mapa en el panel inferior contiene las capas agregadas por el script.

Figura 12: Visor de mapas

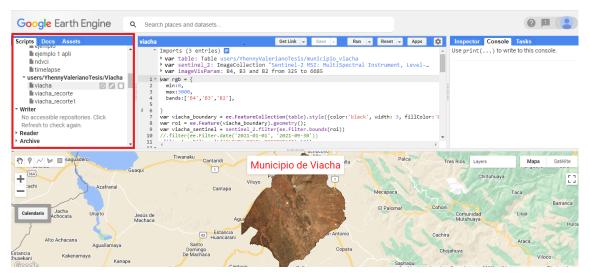

• En la parte superior hay un cuadro de búsqueda para conjuntos de datos y lugares.

Figura 13: Búsqueda de lugares y conjunto de datos

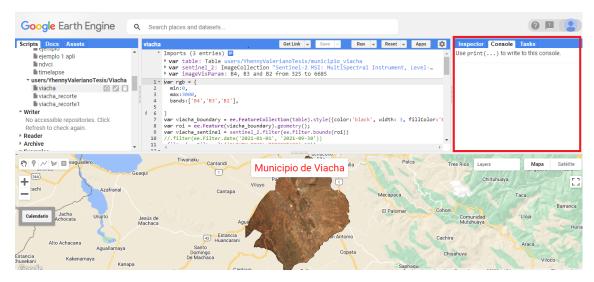

 El panel izquierdo contiene ejemplos de código, sus scripts guardados, una referencia de API de búsqueda y un administrador de activos para datos privados.

Figura 14: Panel de administración, documentos API, administrador de activos.

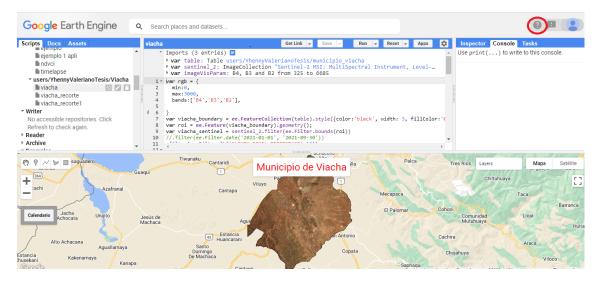

 El panel derecho tiene un inspector para consultar el mapa, una consola de salida y un administrador para tareas de larga duración.

Figura 15: Panel de inspección, consola y tareas.

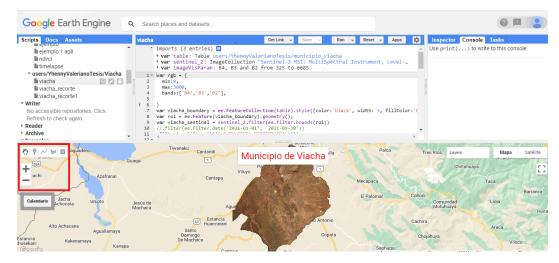

 La ayuda del botón de ayuda en la esquina superior derecha contiene enlaces a esta Guía y otros recursos para obtener ayuda.

Figura 16: Botón de ayuda

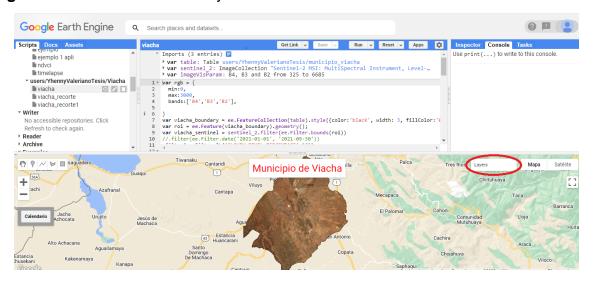

 Las herramientas de dibujo geométrico situadas en la parte superior izquierda del visor de mapas pueden utilizarse para crear manualmente puntos, líneas o polígonos.

Figura 17: Herramientas de dibujo geométrico

La herramienta Layers que se encuentra en la esquina superior derecha del mapa.
 Esta barra de herramientas le permitirá hacer clic en las capas, así como ajustar su transparencia y configurar interactivamente los parámetros de visualización de cada capa.

Figura 18: Administrador de Layers.

2.11.7. Algoritmos

Mediante la programación de algoritmos la plataforma puede ejecutar una serie de instrucciones para llevar a cabo los procesos requeridos.

Se puede clasificar a los algoritmos en:

- Machine Learning: realizar clasificación supervisada y no supervisada, modelos de TensorFlow, etc.
- **Imágenes**: Resumen de imagen, visualización, información y metadatos, operaciones matemáticas, cálculo de gradientes, transformaciones espectrales, etc.
- Colecciones de imágenes: información y metadatos, filtrado, mosaicado, visualización, etc.
- Geometrías, objetos geográficos y colecciones de objetos geográficos:
 operaciones geométricas, filtros, interpolaciones de vectorial a raster, etc.
- Reducciones: estadísticas de la región de una imagen, conversión vectorial a raster y viceversa, regresión lineal, etc.
- Uniones: uniones simples, uniones espaciales, uniones internas, etc.
- Gráficos: histogramas, series de tiempo en regiones de imágenes, gráficos de series de tiempo, etc.
- Matrices: transformación de matrices.
- Algoritmos especializados: algoritmos Landsat y Sentinel-1.
- Gestión de activos: importación de archivos raster, importación de tablas de datos, exportación de datos.

Las líneas de código más comunes del Code Editor son:

 Var: son contenedores en los cuales se puede almacenar valores de distintos tipos ya sean de tipo String, Number, Boolean, incluso llamar imágenes, colecciones satelitales de Data Catalog.

```
var string = 'imagen';
var number = 14;
var boolean = true;
var imagen = ee.ImageCollection("COPERNICUS/S2_SR");
```

 Comentarios: en JavaScript los comentarios se inician con // si fueran comentarios de una sola línea, si en caso fueran varias líneas de códigos se escriben entre /*
 */.

```
// Definir una unión.
var unirse = ee.Unirse.saveAll('doy_matches');

/*Aplicar la combinación y convertir la FeatureCollection resultante en una
Colección de imágenes.
var joinCol = ee.ImageCollection(join.apply(distinctDOY, col, filter));*/
```

 Condicionales: permiten comprobar si una expresión que se devuelve es verdadera o falsa, es la llamada if...else

Map.addLayer: agrega y devuelve una nueva capa al mapa.

Map.addLayer(eeObject, visParams, name, shown, opacity)

Map.centerObject: centra la vista del mapa en un punto determinado.

```
i 6  var imagen = ee.ImageCollection("COPERNICUS/S2_SR")
i 7  Map.addLayer(imagen, rgbVis, 'Imagen')
8  //Map.centerObject(object, zoom, onComplete)
i 9  Map.centerObject(imagen, 10)
```

Print: imprime los argumentos en la consola.

```
print ('hola mundo')
print(1); // 1
print(ee.Number(1)); // 1
print(ee.Array([1])); // [1]

print(ee.Array([1])); // [1]

print(ee.ImageCollection('AAFC/ACI').size()); // 10
print(ee.Image('AAFC/ACI/2009')); // Image AAFC/ACI/2009 (1 band)

print(ee.FeatureCollection("NOAA/NHC/HURDAT2/pacific").size()); // 28547
```

ui.Button: Un botón en el que se puede hacer clic con una etiqueta de texto.

```
ui.Button(label, onClick, disabled, style, imageUrl)
```

```
var botonpanel = ui.Button({
  label: 'Calendario',
  onClick : función (p){
    p= Map.add(panel)
  },
  disabled: null,
style : {color: 'black', backgroundColor: '9c9c9c', position: 'top-left'}})
```

 ui.Chart: permite generar gráficos de series de tiempo a partir de puntos que son elegidos dinámicamente en un mapa.

```
// Crear un gráfico MODIS NDVI.
var ndviChart = ui.Chart.image.series(coleccion.select('NDVI'), point, ee.Reducer.mean(), 10);
ndviChart.setOptions({
    title: 'MODIS NDVI',
    });
panel.widgets().set(3, ndviChart);
});

Map.style().set('cursor', 'crosshair');
```

Export.image.toDrive: exporta una imagen como un ráster a Drive.

```
var imagen = ee.Imagen ( 'LANDSAT/LC08/C02/T1_L2/LC08_044034_20210508' )
2
    . seleccionar ([ 'SR_B.' ]); // bandas de reflectancia
3
4 // Una región de interés.
5 var región = ee.Geometry.BBox ( -122.24 , 37.13 , -122.11 , 37.20 );
7 // Establecer los parámetros de exportación "escala" y "crs".
8 ▼ Exportar.imagen.aDrive ({
    imagen : imagen ,
10 descripción : 'image_export' ,
    carpeta : 'ee_demos',
11
     región : región ,
13 escala: 30,
    crs : 'EPSG:5070'
14
15 });
```

 Ui.Label: se la utiliza para mostrar texto en el visor de capas, tiene propiedades para cambiar el tamaño de texto, fuente,color de texto, etc.

```
ui.Label(value, style, targetUrl, imageUrl)
var etiqueta= ui.Label({value: 'Municipio de Viacha',
    style: {
      fontSize: '24px',
      color: 'red',
    }
})
Map.add(etiqueta)
```

• ee.Filter.date: filtra imágenes satelitales por rangos de fechas, el inicio y el final pueden ser fechas numéricas.

```
ee.Filter.date(start, end)
```

 ee.Filter.bounds: filtra una colección por intersección con la geometría, devuelve una colección filtrada.

ImageCollection.filterBounds(geometry)

```
var geometry = ee.Geometry.Point(-68.74492187500002,-15.935239322868085)
var viacha= ee.ImageCollection("COPERNICUS/S2_SR")
.filter(ee.Filter.bounds(geometry))
.filter(ee.Filter.date('2021-01-01', '2021-09-30'))
Map.addLayer(viacha)
```

2.12. SISTEMA DE INFORMACIÓN GEOGRAFICA

Según Vílchez (2000). Un Sistema de Información Geográfica (SIG) es un sistema de información que trata datos georreferenciados, es decir, procesa información de eventos o entidades geoespaciales con el fin de generar una información nueva mediante operaciones de manipulación y análisis que ayude a la toma de decisiones. (p.203).

Un sistema de información geográfica (SIG) es un marco de trabajo para reunir, gestionar y analizar datos. Arraigado en la ciencia geográfica, SIG integra diversos tipos de datos. Analiza la ubicación espacial y organiza capas de información para su visualización, utilizando mapas y escenas 3D. Con esta capacidad única, SIG revela el conocimiento más profundo escondido en los datos, como patrones, relaciones y situaciones, ayudando a los usuarios a tomar decisiones más inteligentes. (Sistemas de información geográfica, s.f.).

2.13. INDICES DE VEGETACIÓN

Los índices de vegetación, o índices verdes, son transformaciones que implican efectuar una combinación matemática entre los niveles digitales almacenados en dos o más bandas espectrales de la misma imagen. (Esperanza y Zerda, 2002).

Un Índice de Vegetación, puede ser definido como un parámetro calculado a partir de los valores de la reflectancia a distintas longitudes de onda, y que es particularmente sensible a la cubierta vegetal (Gilabert et al, 1997).

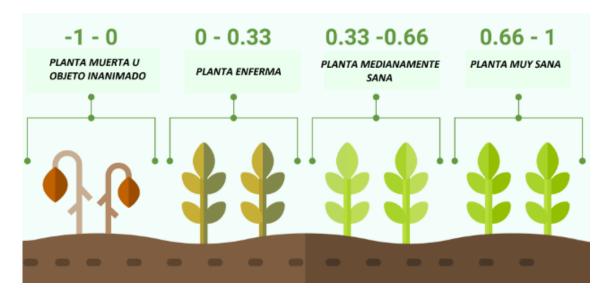
2.13.1. Índices de vegetación en Google Earth Engine.

Los Índices de Vegetación son medidas radiométricas que combinan bandas espectrales registradas por los satélites de Teledetección para aumentar la señal de vegetación, son imágenes calculadas a partir de operaciones algebraicas entre distintas bandas espectrales. El resultado permite obtener una nueva imagen.

El NDVI índice de vegetación de diferencia normalizada, ayuda a distinguir zonas desnudas y presencia de agua haciendo del índice un parámetro cualitativo, pero interfiere en la identificación de presencia de vegetación cuando el suelo se encuentra parcialmente cubierto. Índices, como el SAVI, pueden ayudar a obtener mejores resultados frente al tradicional NDVI. (Geo innova, 2021.).

NDVI (Normalized Difference Vegetation Index)

$$NDVI = \frac{(NIR - RED)}{(NIR + RED)}$$


NIR es luz infrarroja cercana.

Red es luz roja visible.

Es el índice de vegetación más utilizado desde la década de 1970 ayuda a diferenciar la vegetación de otros tipos de cobertura gracias a la medición que se realiza por medio de sensores remotos instalados en los satélites de la intensidad de la radiación de la banda del infrarrojo del espectro electromagnético en la que la vegetación emite o refleja según su estado de salud.

Los resultados del cálculo del NDVI varían de -1 a 1. Los valores negativos corresponden a áreas con superficies de agua, estructuras artificiales, rocas, nubes, nieve; el suelo desnudo generalmente cae dentro del rango de 0.1 a 0.2; y las plantas siempre tendrán valores positivos entre 0.2 y 1. El dosel de vegetación sano y denso debería estar por encima de 0.5, y la vegetación dispersa probablemente caerá dentro de 0.2 a 0.5. Sin embargo, es solo una regla general y siempre debe tener en cuenta la temporada, el tipo de planta y las peculiaridades regionales para saber exactamente qué significan los valores de NDVI.

Figura 19: NDVI

Nota: Índices de vegetación. Tomado de Cursos teledetección.com, 2019.

SAVI (Soil Adjusted Vegetation Index)

SAVI =
$$\frac{(NIR - RED)}{(NIR + RED + L)} * (1 + L)$$

SAVI, el Índice de Vegetación Ajustado al Suelo es un índice de vegetación que intenta minimizar las influencias del brillo del suelo utilizando un factor de corrección. Está más adaptado a estudios de análisis de vegetación en etapas de crecimiento inicial o vegetación dispersa. En general, el SAVI puede ser una buena alternativa ente cualquier suelo donde exista una baja densidad vegetal y la exposición de la superficie del suelo sea relevante, es un buen indicador en los primeros estadíos de cultivo.

• EVI (Enhanced Vegetation Index)

$$EVI = 2.5 * \frac{(NIR - RED)}{((NIR) + (C1 * RED) - (C2 * BLUE) + L)}$$

EVI es un índice más propio de bandas MODIS que trabaja las bandas rojo y azul del visible para corregir el efecto de la atmósfera junto al factor L para corregir la influencia

del suelo. Además del factor L emplea dos parámetros adicionales constantes C (C1=6, C2=7.5,), permite monitorizar el estado de la vegetación en caso de altas densidades de biomasa.

GLI (Green Leaf Index)

$$GLI = \frac{(2 * GREEN) - RED - BLUE}{(2 * GREEN) + RED + BLUE}$$

El índice GLI es un estupendo índice cuando no dispongas de las bandas de trabajo originales y cuentes con imágenes RGB básicas a color natural incorpora las tres bandas del visible rojo, verde y azul y presenta gran sensibilidad a la hora de identificar todos aquellos elementos verdes y oscuros. A través de las bandas de la imagen podrás distinguir zonas vegetales, aunque deberás de ser cuidadoso si existen zonas de sombra ya que el índice es especialmente sensible al color y te mostrará zonas de oscuridad como zonas de vegetación.

GCI (Green Chlorophyll Index)

$$GCI = \frac{NIR}{GREEN} - 1$$

El GCI o Índice de Clorofila Verde se usa para estimar el contenido de clorofila de las hojas en varias especies de plantas. El contenido de clorofila refleja el estado fisiológico de la vegetación; disminuye en plantas estresadas y, por lo tanto, puede usarse como un evaluador de la vigorosidad de las plantas.

RGR (Red Green Ratio)

$$RGR = \frac{(RED)}{(GREEN)}$$

Es útil para los casos de masas vegetales que generan enrojecimiento de la estructura vegetal como defensa ante el exceso de luz ultravioleta o por degradación de clorofila

Este índice es útil para hacer estimaciones del desarrollo del follaje, indicando la producción y el estrés de las hojas, o incluso indicando la floración.

Donde la media (ROJA) representa todas las bandas con longitudes de onda en el rango rojo del espectro electromagnético y la media (VERDE) representa todas las bandas con longitudes de onda en el rango verde del espectro electromagnético. El rango de una relación RGR es de 0,1 a más de 8, donde la vegetación verde saludable generalmente se encuentra entre valores de 0,7 a 3.

SIPI (Structure Insensitive Pigment Index)

$$SIPI = \frac{(NIR - BLUE)}{(NIR - RED)}$$

Es bueno para el análisis de la vegetación con una estructura del dosel variable. Estima la relación entre los carotenoides y la clorofila, el alto nivel de carotenoides y bajo nivel de clorofila puede significar la existencia de una enfermedad en los cultivos. El valor de este índice varía de 0 a 2. El rango común para la vegetación verde es de 0,8 a 1,8.

ARVI (Atmospherically Resistant Vegetation Index)

$$ARVI = \frac{(NIR) - (2RED - BLUE)}{(NIR) + (2RED - BLUE)}$$

ARVI o Índice de Vegetación Resistente a la Atmósfera es una mejora del NDVI que es relativamente resistente a factores atmosféricos como los aerosoles. Funciona utilizando mediciones de reflectancia en las longitudes de onda azules para corregir los efectos de dispersión atmosférica que se registran en el espectro de reflectancia roja. El ARVI es más útil en regiones de alto contenido de aerosoles atmosféricos.

El rango para un ARVI es de -1 a 1, donde la vegetación verde generalmente cae entre valores de 0,20 a 0,80.

NBRI (Normalized Burned Ratio Index)

$$NBR = \frac{(NIR - SWIR)}{(NIR + SWIR)}$$

Índice Normalizado de Área Quemada se utiliza para resaltar las zonas quemadas tras un incendio. La fórmula del índice de vegetación NBR incluye mediciones en las longitudes de onda del infrarrojo cercano y el infrarrojo de onda corta: la vegetación sana muestra una alta reflectancia en el espectro del infrarrojo cercano, mientras que las zonas de vegetación recientemente quemadas se reflejan mucho en el espectro del infrarrojo de onda corta.

Detección de incendios forestales activos en agricultura y silvicultura, análisis de la gravedad del quemado y monitorización de la supervivencia de la vegetación después de la quema.

2.14. USO DE SUELOS

El uso de suelo se refiere a la ocupación de una superficie determinada en función de su capacidad agrológica y por tanto de su potencial de desarrollo, se clasifica de acuerdo a su ubicación como urbano o rural, representa un elemento fundamental para el desarrollo de la ciudad y sus habitantes ya que es a partir de éstos que se conforma su estructura urbana y por tanto se define su funcionalidad (Procuraduría Ambiental y del Ordenamiento Territorial del D.F., 2003).

El uso del suelo (terreno), se refiere a la manera en la cual las coberturas son utilizadas por el hombre, para satisfacer sus necesidades materiales y espirituales. En otro contexto el uso de suelo describe las actividades del hombre que se desarrollan sobre la superficie terrestre y al influir el humano en el ambiente para producir bienes y servicios este uso tiende a transformarse (Pineda, 2011).

2.15. MONITOREO

Monitoreo es el proceso sistemático de recolectar, analizar y utilizar información para hacer seguimiento al progreso de un programa en pos de la consecución de sus objetivos, y para guiar las decisiones de gestión. El monitoreo generalmente se dirige

a los procesos en lo que respecta a cómo, cuándo y dónde tienen lugar las actividades, quién las ejecuta y a cuántas personas o entidades beneficia. (Centro Virtual de Conocimiento para Poner Fin a la Violencia contra las Mujeres y Niñas [ONU MUJERES], 2010).

El monitoreo es la acción de supervisar o vigilar mediante equipos o sistemas de cualquier tipo las acciones que se realizan en lugares determinados, y se le llama monitoreo porque estas acciones se proyectan como imágenes en un monitor. (Definicionyque.es., 2016).

2.15.1. Tipos de monitoreo.

- Monitoreo de seguridad: usado por las empresas de vigilancia para el control a distancia de la seguridad de los inmuebles de sus clientes, para la protección interna y externa de un negocio.
- **Monitoreo por defecto**: es aquel que se realiza a los equipos para detectar las posibles fallas que puedan presentar y solucionarlas lo más pronto posible.
- Monitoreo clínico: es la vigilancia de las funciones vitales que realiza el personal médico a sus pacientes con el fin de detectar anomalías que se presenten durante la recuperación.
- Monitoreo ambiental: es el seguimiento continuo y sistemático de las variables ambientales para identificar y evaluar, cualitativa y cuantitativamente, las condiciones de los recursos naturales, estés resultados no se dan inmediatamente, sino que tiene que tener cierto tiempo de estudio para que se puedan definir fallas ambientales.
- Monitoreo de red: es el control continuo de una red de computadoras para detectar defectos y anomalías.
- Monitoreo satelital: es el que se realiza a través de plataformas inalámbricas para mantener el control vehicular capaz de indicar la ubicación geográfica de los vehículos en cualquier parte del mundo.

2.16. TERRITORIO

El territorio se define como la porción de la superficie terrestre apropiada por un grupo social con el objetivo de asegurar su reproducción y la satisfacción de sus necesidades vitales (Mazurek, 2005).

Para Geiger (1996), el territorio es una extensión terrestre que incluye una relación de poder o de posesión por parte de un individuo o de un grupo social, que contiene límites de soberanía, propiedad, apropiación, disciplina, vigilancia y jurisdicción, y transmite la idea de cerramiento.

2.16.1. Estructura territorial de Bolivia.

- Departamentos. La administración de cada departamento está a cargo del Gobierno Departamental constituido por el gobernador y la asamblea legislativa departamental. Existen 9 departamentos desde septiembre de 1938.
- Provincias. En Bolivia se cuenta con 112 provincias, las cuales son subdivisiones territoriales inferiores a los departamentos y superiores a los municipios. El gobernador de cada departamento es el que se encarga de designar a los subgobernadores que están a cargo de la administración de las provincias.
- Municipios. La administración de los municipios está a cargo de un gobierno municipal que consta de un alcalde y un concejo municipal, existen actualmente en Bolivia 342 municipios.

2.17. DATOS

Los datos son una representación formalizada de hechos, conceptos o instrucciones adecuada para su comunicación, interpretación o procesamiento por personas o medios artificiales; mientras que la información son datos dispuestos en patrones significativos o sintetizados. Por su parte, el conocimiento es información condensada dentro del contexto que es útil para la toma de decisiones y la acción. (Pollock, 2002).

Se conoce que la palabra Datos proviene del latín "Dtum" cuyo significado es "lo que se da". Los datos son la representación simbólica, bien sea mediante números o letras

de una recopilación de información la cual puede ser cualitativa o cuantitativa, que facilitan la deducción de una investigación o un hecho. (Yirda, 2021).

2.18. INGENIERIA DE SISTEMAS

La Ingeniería de Sistemas es la encargada de encontrar soluciones prácticas a la vida cotidiana a través de conocimientos matemáticos y ciencias de la ingeniería. La ingeniería de sistemas requiere de un método, el análisis, la experiencia, un enfoque investigativo y un soporte científico. La obligación principal del ingeniero es poner los recursos de la naturaleza al servicio del ser humano. (Pico, 2013).

Es la rama de la ingeniería relacionada con el manejo de las tecnologías y los sistemas de información. Esta contempla las bases teóricas y metodológicas necesarias para el diseño, la implantación, el análisis, el control, el procesamiento, el transporte, la oper atividad, la toma de decisiones y la búsqueda de seguridad de los sistemas informáticos (Universia, s.f.).

2.19. INVESTIGACIÓN

El término investigación es definido como una actividad enfocada en obtener conocimientos nuevos o simplemente ampliarlos, de manera que a través de ellos, se puedan solucionar interrogantes o problemas cuyo carácter sea científico (Pérez, 2021).

La investigación es un proceso intelectual y experimental que comprende un conjunto de métodos aplicados de modo sistemático, con la finalidad de indagar sobre un asunto o tema, así como de ampliar o desarrollar su conocimiento, sea este de interés científico, humanístico, social o tecnológico. (Coelho, 2021).

2.19.1. Tipos de investigación.

Los diferentes tipos de estudios investigativos están los siguientes: Según el objetivo, según el método, según la fuente y según el resultado.

2.19.1.1. Según el objetivo

- Investigación básica. Se encarga de incrementar los conocimientos de tipo teóricos sin necesidad de tener interés en las aplicaciones o consecuencias prácticas que pueda tener.
- **Investigación aplicada.** Se encarga de emplear los conocimientos adquiridos en las prácticas, esto con la finalidad de ejecutarlos y darle provecho a la sociedad.

2.19.1.2. Según el método

- Investigación cualitativa. No hay pruebas teóricas, al contrario, las hipótesis son generadas en los procedimientos investigativos. Recoge discursos existentes respecto al tema y realiza una interpretación.
- Investigación cuantitativa. Se encarga de medir, estimar y reflejar las magnitudes, generando preguntas como cuándo, cómo, por qué y con qué magnitud ocurren los fenómenos. Emplea magnitudes numéricas para expresar su trabajo.
- Investigación cuali- cuantitativa. Se trata de un estudio mixto que emplea los mejores aspectos de las dos vertientes anteriores, de forma que minimiza las debilidades potenciales y combina los enfoques positivos.

2.19.1.3. Según la fuente

- Investigación experimental. Esta suele presentarse a través de la manipulación de variables experimentales que no han sido comprobadas, con el fin de describir de qué modo o porque causa se produce dicho acontecimiento.
- Investigación documental. Se trata de la recopilación y selección de cualquier tipo de información a través de la crítica y lectura de material y documentos bibliográficos, hemerotecas, bibliotecas o de centros de información.
- Investigación de campo.- Es un procedimiento en el cual se ejecuta un método científico que permite que se obtengan conocimientos nuevos de acuerdo a la realidad social. Es la recopilación de datos directamente de la realidad y permite la obtención de información directa para un propósito específico.

2.19.1.4. Según el resultado

- Investigación descriptiva. También conocida como investigación estadística, se encarga de describir los datos y, a su vez, analizar el impacto que estos tienen en las personas que se encuentran en ese entorno.
- Investigación correccional. Se trata de estudios no experimentales en los cuales el científico o investigador se encarga de medir diferentes variables, entendiendo y evaluando las relaciones estadísticas entre ellas mismas sin tener influencia de variables extrañas.

2.20. METODOLOGÍAS

2.21. MÉTODO CIENTÍFICO

La investigación científica es esencialmente como cualquier tipo de investigación, sólo que más rigurosa y cuidadosamente realizada. Podemos definirla como un tipo de investigación "sistemática, controlada, empírica, y crítica, de proposiciones hipotéticas sobre las presumidas relaciones entre fenómenos naturales" (Kerlinger, 1975, p. 11, citado por Sampieri).

Que es "sistemática y controlada" implica que hay una disciplina constante para hacer investigación científica y que no se dejan los hechos a la casualidad. "Empírica" significa que se basa en fenómenos observables de la realidad. Y "crítica" quiere decir que se juzga constantemente de manera objetiva y se eliminan las preferencias personales y los juicios de valor. Es decir, llevar a cabo investigación científica es hacer investigación en forma cuidadosa y precavida.

La investigación puede cumplir dos propósitos fundamentales: a) producir conocimiento y teorías (investigación básica) y b) resolver problemas prácticos (investigación aplicada). Gracias a estos dos tipos de investigación la humanidad ha evolucionado. La investigación es la herramienta para conocer lo que nos rodea y su carácter es universal. Como señala uno de los científicos de nuestros tiempos, (Carl Sagan, 1998).

Según Hernández, Fernández, Baptista los pasos o las etapas del proceso de investigación son:

Primer paso

2.21.1. Concebir la idea a investigar.

Las ideas deben ser novedosas, alentar al investigador, servir para la elaboración de teorías, la resolución de problemas, dar un enfoque diferente a lo ya existente, se debe generar ideas potenciales para investigar desde una perspectiva científica cuantitativa.

Segundo paso

2.21.2. Planteamiento del problema de investigación.

Consiste en afinar y estructurar la idea de investigación, los elementos para plantear un problema son tres: objetivo de investigación, preguntas de investigación y la justificación del estudio.

- Objetivo de investigación establece que se pretende con la investigación.
- **Preguntas de investigación** dicen que respuestas deben encontrarse mediante la investigación.
- **Justificación del estudio** indican el por qué y para que hacerse la investigación exponer las razones del estudio.

En el enfoque cuantitativo el planteamiento del problema de investigación precede a la revisión de la literatura y al resto del proceso de investigación; aunque esta revisión pueda modificar el planteamiento original.

En el enfoque cualitativo, el planteamiento del problema llega a surgir en cualquier momento de la investigación, incluso al principio o al final.

Tercer paso

2.21.3. Elaboración del marco teórico.

Es la parte teórica textual o de referencia del tema a investigar, se integra con los enfoques teóricos, estudios y antecedentes, que se refieran al problema de investigación para desarrollar el marco teórico.

Funciones principales del marco teórico.

- Ayuda a prevenir errores que se han cometido en otros estudios.
- Orienta sobre como habrá que de realizarse el estudio.
- Amplía el horizonte del estudio o guía al investigador para que se centre en su problema, evitando desviaciones del planteamiento original.
- Conduce al establecimiento de hipótesis o afirmaciones.
- Inspira nuevas líneas y áreas de investigación.
- Provee de un marco de referencia para interpretar los resultados del estudio.

Cuarto paso

2.21.4. Definición del alcance de la investigación a realizar.

Se define si la investigación se inicia como exploratoria, descriptiva, correlacional o explicativa y hasta que nivel llegara.

- Estudio exploratorio se realiza cuando el objetivo es examinar un tema o un problema de investigación poco estudiado del cual se tienen muchas dudas o no se había abordado el tema antes.
- Estudio descriptivo buscan especificar las propiedades, las características y los perfiles importantes de personas, grupos, comunidades o cualquier otro fenómeno que se someta a un análisis. Describe situaciones, eventos y hechos como es y cómo se manifiesta dicho fenómeno, selecciona una serie de cuestiones y se mide o recolecta información sobre cada una de ellas para así describir lo que se investiga de manera independiente o conjunta.
- Estudio explicativo están dirigidos a responder a las causas de los eventos, sucesos o fenómenos físicos o sociales, se centra en explicar por qué ocurre un fenómeno y en qué condiciones se da éste, o por qué se relacionan dos o más variables.
- Estudio correlacional relacionan o vinculan diversos conceptos, variables o
 características entre sí, miden el grado de relación entre esas dos o más variables
 y analizan la correlación que puede ser positiva o negativa. Si es positiva, significa

que sujetos con altos valores en una variable tenderán a mostrar altos valores en la otra variable, por otro lado, si es negativa significa que sujetos con altos valores en una variable tenderán a mostrar bajos valores en la otra variable. La utilidad y el propósito principal son saber cómo se puede comportar un concepto o una variable conociendo el comportamiento de otras variables relacionadas.

Quinto paso

2.21.5. Formulación de hipótesis.

Las hipótesis indican lo que estamos buscando o tratando de probar y se definen como explicaciones tentativas del fenómeno investigado, formuladas a manera de proposiciones. Las hipótesis son el centro de enfoque creativo- deductivo, puede surgir del planteamiento del problema se vuelve a evaluar y si es necesario se replantea después de revisar la literatura.

- Analizar la conveniencia de formular o no hipótesis que orienten el resto de la investigación, tomando en cuenta el enfoque del estudio y su alcance.
- En caso de que se considere conveniente formular hipótesis, habrá que establecerlas.
- Detectar las variables de las hipótesis.
- Definir conceptualmente las variables de las hipótesis.
- Definir operacionalmente las variables de las hipótesis.

Las características de la hipótesis:

- Deben referirse a una situación social real.
- Los términos de las variables deben ser comprensibles, precisos y lo más concreto posible.
- La relación entre variables propuesta por una hipótesis debe ser clara y verosímil (lógica).
- Los términos de la hipótesis y la relación planteada entre ellos deben ser observables y medibles.
- Las hipótesis deben estar relacionadas con técnicas disponibles para probarlas.

Los tipos de hipótesis de investigación son las siguientes:

- Hipótesis descriptivas del valor de las variables que se va a observar en un contexto o en la manifestación de otra variable.
- Hipótesis correlaciónales, especifican las relaciones entre dos o más variables.
- **Hipótesis de la diferencia entre grupos**, estas hipótesis se formulan en investigaciones cuya finalidad es comparar grupos.
- Hipótesis que establecen relaciones de causalidad, este tipo de hipótesis no solamente afirma las relaciones entre dos o más variables y cómo se dan dichas relaciones, sino que además proponen un "sentido de entendimiento" de ellas dependiendo del número de variables que se incluyan, pero todas estas hipótesis establecen relaciones de causa-efecto. A las supuestas causas se les conoce como "variables independientes" y a los efectos como "variables dependientes".

Existen distintos tipos de hipótesis causales:

- ✓ Hipótesis causales bivariadas, se plantea una relación entre una variable independiente y una variable dependiente.
- ✓ Hipótesis causales multivariadas. Plantean una relación entre diversas variables independientes y una dependiente, o una independiente y varias dependientes, o diversas variables independientes y varias dependientes.

Sexto paso

2.21.6. Diseños de investigación.

Es el plan o estrategia para obtener información el diseño se utiliza para analizar la certeza de las hipótesis o para aportar evidencia.

Experimental aplica a un estímulo y ve el efecto de ese estimulo en una variable son propios de la investigación cuantitativa.

No experimental se realiza sin manipular deliberadamente las variables independientes; se basa en categorías, conceptos y variables, se aplica en ambos enfoques ya sea cualitativos o cuantitativo.

En el enfoque cuantitativo, la calidad de una investigación se encuentra relacionada con el grado en que apliquemos el diseño tal y como fue preconcebido.

En el enfoque cualitativo la aplicación del diseño suele ser más "cíclica" y variable, en busca de adaptar el diseño a los cambios de la situación de investigación o del evento, la comunidad, el grupo o el contexto.

Séptimo paso

2.21.7. Selección de muestra.

Es un subgrupo de la población y puede ser probabilística o no probabilística se requiere determinar el tamaño adecuado y seleccionar los elementos en forma aleatoria, implica definir la unidad de análisis delimitando la población para generalizar resultados y establecer parámetros. En el enfoque cuantitativo las muestras son esenciales.

Pasos para la selección de muestra:

- Definir los casos (participantes u otros seres vivos, objetos, fenómenos, sucesos o comunidades) sobre los cuales se habrán de recolectar los datos.
- Delimitar la población.
- Elegir el método de selección de las muestras:
- ✓ Probabilístico. Son esenciales en los dos diseños de investigación transaccionales cuantitativos (por encuestas), donde se pretende hacer estimaciones de variables en la población; estas variables se miden con instrumentos de medición y se analizan con pruebas estadísticas para el análisis de datos, donde se presupone que la muestra es probabilística y con todos los elementos de la población tienen una misma probabilidad de ser elegidos.
- ✓ No probabilístico. La elección de los elementos, no depende de la probabilidad, sino de causas relacionadas con las características de la investigación o de quien hace la muestra. El procedimiento depende del proceso de toma de decisiones de una persona o de un grupo de personas y, desde luego, las muestras seleccionadas obedecen a otros criterios de investigación.

- Precisar el tamaño de la muestra requerido.
- Aplicar el procedimiento de selección.
- Obtener la muestra.

Octavo paso

2.21.8. Recolección de los datos.

Implica seleccionar uno o varios métodos o instrumentos como ser entrevistas, encuestas y otros desarrollarlos, aplicarlos y preparar mediciones para analizarlos correctamente.

Pasos para la recolección de datos.

- Seleccionar un instrumento o método de recolección de datos.
- Aplicar ese instrumento o método para recolectar datos.
- Preparar observaciones, registros y mediciones obtenidas.

Pasos para construir un instrumento de medición.

- Listar las variables que se pretende medir u observar.
- Revisar su definición conceptual y comprender sus significados.
- Revisar cómo han sido definidas operacionalmente las variables, es saber cómo se ha medido esto es comparando cada instrumento con las cuales se utilizaron para medir las variables.
- Elegir el instrumento o los instrumentos que hayan sido favorecidos por la comparación y adaptarlos al contexto de la investigación. O en caso de que no se elija un instrumento se puede construir uno propio es necesario pensar en cada variable y sus dimensiones, así como en indicadores precisos e ítems para cada dimensión.

Noveno paso

2.21.9. Análisis de datos.

Analizar e interpretar mediante pruebas estadísticas las hipótesis planteadas, mediante programas computacionales.

Pasos para analizar los datos:

- Decidir qué tipo de análisis de los datos se llevará a cabo: cuantitativo, cualitativo o mixto.
- En caso de que el análisis elegido sea cuantitativo, seleccionar las pruebas estadísticas apropiadas para analizar los datos, dependiendo de las hipótesis formuladas y de los niveles de medición de las variables.
- En caso de que el análisis elegido sea cualitativo, pre diseñar o "coreografiar" el esquema de análisis de los datos.
- Seleccionar un programa computacional para analizar los datos: ya sea un paquete estadístico o un paquete de apoyo al análisis cualitativo.
- Aplicar el programa.
- Obtener los análisis requeridos.
- Interpretar los análisis.

Decimo paso

2.21.10. Elaboración del reporte de investigación.

Los elementos que contiene un reporte de investigación dentro de un contexto académico:

- Portada. Es la primera página incluye el título de la investigación, el nombre del autor o los autores y su afiliación institucional, o el nombre de la organización que patrocina el estudio, así como la fecha en que se presenta el reporte.
- 2. **Índice** Incluye apartados y sub apartados, se considera como un esquema donde se ordena de forma numérica o alfanumérica el contenido de una investigación.

- 3. Resumen ejecutivo constituye brevemente el contenido esencial del reporte de investigación, y usualmente incluye el planteamiento del problema, el método, los resultados más importantes y las principales conclusiones. Debe ser comprensible, sencillo, informativo, preciso, completo, conciso y específico. Su propósito es proporcionar a los lectores una visión clara de lo que has investigado y las conclusiones correspondientes.
- 4. **Introducción** Incluye los antecedentes, el planteamiento del problema, el contexto de la investigación, las variables y términos de la investigación y sus definiciones.
- 5. Marco teórico es la recopilación de antecedentes, investigaciones previas y consideraciones teóricas de una investigación, análisis, hipótesis o experimento. Es la parte fundamental de toda investigación, se identifica las fuentes de consulta en las cuales se sustentan la investigación.
- 6. **Método.** Se describe como fue llevada a cabo la investigación, puede significar la ruta o el camino que se sigue para alcanzar un determinado fin e incluye:
 - Enfoque pueden ser cuantitativo, cualitativo o mixto.
 - Contexto de la investigación.
 - Hipótesis abarca definiciones conceptuales y operacionales.
 - Diseño utilizado pueden ser experimental o no experimental.
 - Sujetos, universo y muestra (procedencia, edades, sexo o aquellas características que sean relevantes de los sujetos; descripción del universo y la muestra, y procedimiento de selección de la muestra).
 - Instrumentos de recolección de datos utilizados (descripción precisa, confiabilidad, validez y variables, o conceptos, eventos, situaciones, categorías, lugares de donde se obtuvo información).
 - Procedimiento es un resumen de cada paso en el desarrollo de la investigación.
- 7. **Resultados** son el producto del análisis de los datos. Un resumen de los datos recolectados y el tratamiento estadístico que se les practico (Estudio cuantitativo), así como los datos recolectados y análisis efectuados (estudios cualitativos).
- 8. **Conclusiones**, recomendaciones e implicaciones se realizan recomendaciones para otras investigaciones, se analizan las implicaciones de la investigación y se

- establece cómo se respondieron las preguntas de investigación, así como se cumplieron o no los objetivos.
- Bibliografía son las referencias utilizadas por el investigador para elaborar el marco teórico u otros propósitos que se incluyen al final del reporte ordenadas alfabéticamente.
- 10. Apéndices Resultan útiles para describir con mayor profundidad ciertos materiales, sin distraer la lectura del texto principal del reporte, o evitar que dichos materiales rompan con el formato del reporte.

Pasos para elaborar el reporte

- Definición del usuario.
- Selección del tipo de reporte a presentar: académico o no académico.
- Elaboración del reporte y del material gráfico correspondiente.
- Presentación del reporte.

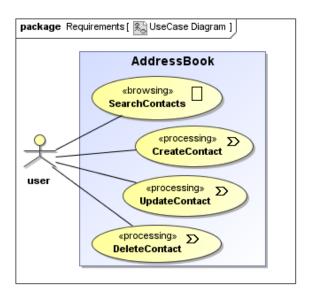
2.22. METODOLOGÍA UWE

UWE es un proceso del desarrollo para aplicaciones Web enfocado sobre el diseño sistemático, la personalización y la generación semiautomática de escenarios que guíen el proceso de desarrollo de una aplicación Web. UWE describe una metodología de diseño sistemática, basada en las técnicas de UML, la notación de UML y los mecanismos de extensión de UML.

Es una herramienta que nos permitirá modelar aplicaciones web, utilizada en la ingeniería web, prestando especial atención en sistematización y personalización (sistemas adaptativos). UWE es una propuesta basada en el proceso unificado y UML pero adaptados a la web. En requisitos separa las fases de captura, definición y validación. Hace además una clasificación y un tratamiento especial dependiendo del carácter de cada requisito.

2.22.1. Modelos de UWE

El modelo que propone UWE está compuesto por 6 sub – modelos.


2.22.1.1. Modelo de requisitos:

En UWE, el modelado de requisitos consta de dos partes:

El primer paso se realiza los casos de uso, se identifica los requerimientos y se los plasma en un modelo de requerimientos que son documentados en dos niveles que propone UWE, se deben describir las acciones o actividades que deben realizar los personajes o entidades que forman parte del diagrama de caso de uso en respuesta a un evento.

Como segundo paso se elabora una descripción de las actividades de los casos de uso más detallada, realizando diagramas de actividad donde se delimiten las responsabilidades y acciones de los actores involucrados en el sistema.

Figura 20: Modelo de casos de uso

Nota: Tomado de UWE – UML-based Web Engineering, s.f.

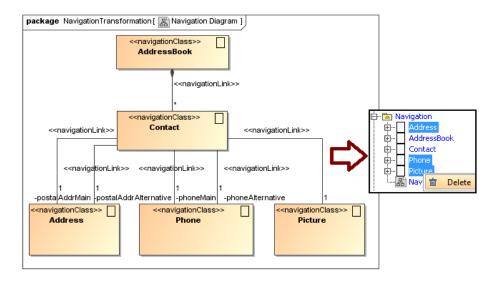
2.22.1.2. Modelo de Contenido:

Es un modelo de análisis e incluye los objetos involucrados en las actividades que los usuarios realizan con la aplicación, El objetivo del modelo de contenido es proporcionar una especificación visual de la información relevante para el dominio del sistema web.

En él se representa la información del dominio, sus datos persistentes, mediante un diagrama de clases UML, donde se puede observar las distintas clases que forman parte del sistema con sus respectivos atributos y estereotipos definido por UWE.

package Content [🏩 Content Diagram] AddressBook introduction: String Contact name : String email: String 1 postalAddrMain -postalAddrAlternative -phoneMain -phoneAlternative-Address Phone Picture -name : String -internationalAreaCode : Integer -width: Integer -postalCode : Integer -prefix : Integer -height : Integer city: String -number : Integer -country : String

Figura 21: Modelo de contenido


Nota: Tomado de UWE – UML-based Web Engineering, s.f.)

2.22.1.3. Modelo de navegación

Éste modelo indica como el sistema de páginas web del sitio se encuentra relacionado internamente, especifica las rutas de navegación del contenido de una aplicación Web. El modelado consiste en generar un diagrama de clases estereotipado con estereotipos de UWE donde cada clase representa una página WEB o elemento de navegación, empleando nodos que representan la información del modelo de contenido y los enlaces (links) expresan las rutas de navegación entre los nodos.

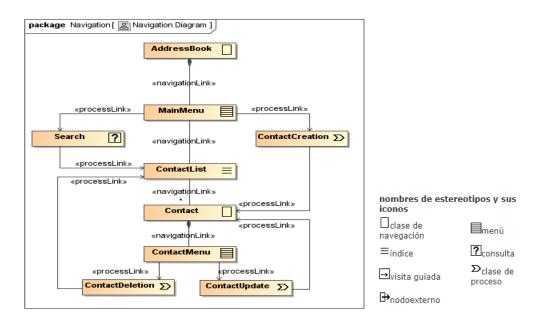

Para nodos y enlaces se utilizan los estereotipos «navigationClass» y «navigationLink».

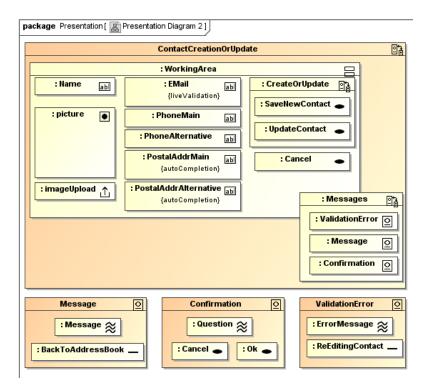
Figura 22: Modelo de transformación de contenido a navegación

Nota: Tomado de UWE – UML-based Web Engineering, s.f.)

Figura 23: Modelo de Navegación

Nota: Tomado de UWE – UML-based Web Engineering, s.f.)

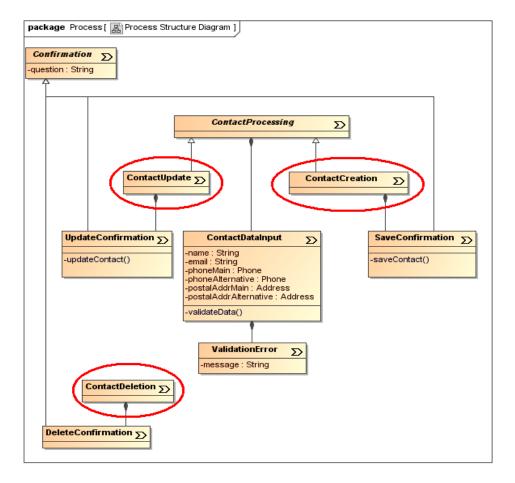
2.22.1.4. Modelo de presentación


Este modelo define la apariencia que pueden tomar los modelos de navegación, se lleva a cabo el modelado de la estructura de cada página web modelada dentro de un diagrama.

El objetivo es que se modele el diseño de las propiedades y elementos que conforman una página web.

Las clases de presentación representan páginas Web que están compuestas de elementos de IU y otras clases de presentación. Los elementos de IU "User Interface Elements" son clases especializadas que representan los elementos de interface en una página Web.

Figura 24: Modelo de presentación


Nota: Tomado de UWE – UML-based Web Engineering, s.f.)

2.22.1.5. Modelo de proceso

Este modelo especifica las acciones que realiza cada clase de proceso desde dos puntos de vista: Desde el punto de vista de la Estructura del Proceso que describe las

relaciones entre las diferentes clases de proceso. Desde el punto de vista del Flujo del Proceso que especifica las actividades conectadas con cada clase de proceso. Se modela mediante un diagrama de actividades de UML, y es resultado de refinar el diagrama de actividades modelado durante la especificación de requerimientos.

Figura 25: Modelo de proceso

Nota: Tomado de UWE – UML-based Web Engineering, s.f.

2.22.2. Fases de UWE

UWE cubre todo el ciclo de vida de este tipo de aplicaciones centrando además su atención en aplicaciones personalizadas o adaptativas.

Las fases o etapas a utilizar son:

1) Captura, análisis y especificación de requisitos: En simple palabras y básicamente, durante esta fase, se adquieren, reúnen y especifican las características funcionales y no funcionales que deberá cumplir la aplicación web.

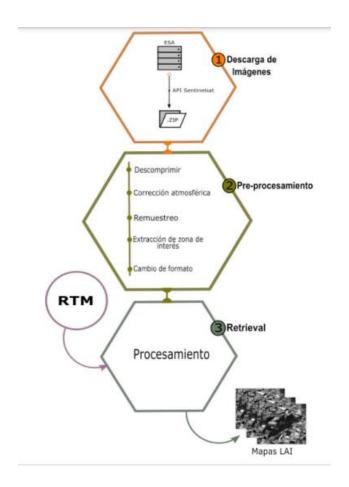
Los requisitos no funcionales son restricciones sobre los requisitos funcionales tales como los relativos al rendimiento, nivel de soporte a errores operativos, plataformas de desarrollo, relaciones internas o ligas entre la información (entre registros o tablas de datos) a almacenar en caso de bases o bancos de datos.

Los requisitos funcionales describen los servicios (funciones) que se esperan del sistema tales como opciones secundarias o de soporte necesarias para una mejor o más sencilla operatividad.

- **2) Diseño del sistema:** Se basa en la especificación de requisitos producido por el análisis de los requerimientos (fase de análisis), el diseño define cómo estos requisitos se cumplirán, la estructura que debe darse a la aplicación web.
 - Diagrama de casos de uso.
 - Diagrama conceptual.
 - Diagrama físico.
 - Diagrama de clases.
 - Modelo Navegacional.
 - Modelo de Presentación.
- 3) Codificación del software: Durante esta etapa se realizan las tareas que comúnmente se conocen como programación; que consiste, esencialmente, en llevar a código fuente, en el lenguaje de programación elegido, todo lo diseñado en la fase anterior.
- **4) Pruebas:** Las pruebas se utilizan para asegurar el correcto funcionamiento de secciones de código.
- **5)** La Instalación o Fase de Implementación: es el proceso por el cual los programas desarrollados son transferidos apropiadamente al computador destino, inicializados, y, eventualmente, configurados; todo ello con el propósito de ser ya utilizados por el

usuario final. Esto incluye la implementación de la arquitectura, de la estructura del hiperespacio, del modelo de usuario, de la interfaz de usuario, de los mecanismos adaptativos y las tareas referentes a la integración de todas estas implementaciones.

6) El Mantenimiento: es el proceso de control, mejora y optimización del software ya desarrollado e instalado, que también incluye depuración de errores y defectos que puedan haberse filtrado de la fase de pruebas de control.


(Galiano, 2012).

2.23. METODOLOGÍA DE TELEDETECCIÓN PARA EL ANÁLISIS DE LAS IMÁGENES DE SATÉLITE

Una definición general de Teledetección es "la ciencia y la tecnología por medio de la cual las características de los objetos de interés pueden ser identificados, medidos o se pueden analizar sus características sin contacto directo" (JARS, 1993).

Normalmente, la teledetección es la medición de la energía que es emanada desde la superficie de la Tierra. Si la fuente de la energía medida es el Sol, entonces es llamada teledetección pasiva, y el resultado de esta medición puede ser una imagen digital (Richards and Jia, 2006). Si la energía medida no es emitida por el Sol y es emitida desde el sensor de la plataforma es definida como teledetección activa, como los sensores de radar que trabajan en el rango de las microondas (Richards y Jia, 2006).

Figura 26: Metodología De Teledetección Para El Análisis De Las Imágenes De Satélite

Nota: Tomado de Ingenientes, 2011

1. Fase de descarga de imágenes

Se realiza la descarga de imágenes de la plataforma de Google Earth Engine donde se encuentran almacenadas todas las imágenes captadas por los satélites, a través de las API Landast, Modis, Sentinel.

2. Fase de Pre- procesamiento

Consiste en corregir los errores, aplicar correcciones que implica la manipulación e interpretación de imágenes satelitales, se ilustran los métodos y algoritmos que se utilizan para aplicar correcciones geo-radiométricas, consiste en 3 etapas:

- Corrección atmosférica. Las imágenes descargadas pueden contener información no deseada como nubosidad, por lo que es importante eliminar este tipo de información.
- Re-muestreo. El re muestreo consiste en homogenizar la resolución espacial de las imágenes descargadas.
- Extracción de la zona de interés. Se extrae solamente la zona de interés con la finalidad de reducir el tamaño, peso y para que el procesamiento sea más rápido.

3. Fase Retrieval

En esta fase se realiza la recuperación de las imágenes pre-procesadas con las cuales se generan los mapas de la zona de interés a ser estudiada.

2.24. MÉTRICA DE CALIDAD AL SOFTWARE

2.24.1. Estándar ISO/IEC 25000.

ISO/IEC 25000, conocida como SQuaRE (System and Software Quality Requirements and Evaluation), es una familia de normas que tiene por objetivo la creación de un marco de trabajo común para evaluar la calidad del producto software.

La familia ISO/IEC 25000 es el resultado de la evolución de otras normas anteriores, especialmente de las normas ISO/IEC 9126, que describe las particularidades de un modelo de calidad del producto software, e ISO/IEC 14598, que abordaba el proceso de evaluación de productos software. Esta familia de normas ISO/IEC 25000 se encuentra compuesta por cinco divisiones. (ISO/25000, s.f.).

Es una familia de normas que tiene por objetivo la creación de un marco de trabajo común para evaluar la calidad del producto software, hacer una evaluación más precisa del producto, especificando en indicadores que apunten al mejoramiento integral.

Figura 27: ISO 25000

Nota: Tomado de ISO 25000, s.f.

- **Funcionalidad**, capacidad del software de proveer los servicios necesarios para cumplir con los requisitos funcionales.
- **Fiabilidad**, capacidad del software de mantener las prestaciones requeridas del sistema, durante un tiempo establecido y bajo un conjunto de condiciones definidas.
- Eficiencia, relación entre las prestaciones del software y los requisitos necesarios para su utilización.
- Usabilidad, esfuerzo requerido por el usuario para utilizar el producto satisfactoriamente.
- Mantenibilidad, esfuerzo necesario para adaptarse a las nuevas especificaciones y requisitos del software.
- Portabilidad, capacidad del software para ser transferido de un entorno a otro.

(Garzas, 2012)

2.25. ESTIMACIÓN DE COSTOS COSMIC

El método de Medición de COSMIC es la segunda generación de métodos de medición de tamaño funcional. Éste ofrece un nivel de confiabilidad compatible con todos los tipos de software. Es de dominio público y el acceso a su documentación no tiene costo. El método tiene reconocimiento total de la ISO/IEC. Posee una base conceptual compatible con la ingeniería de software moderna. Los métodos anteriores no siempre tienen una aplicación amplia o suficiente para atender las necesidades del mercado ni funcionan apenas con acceso restringido. La planeación y medición del desempeño tiene mayor exactitud y además tiene la habilidad de capturar el tamaño a partir de múltiples perspectivas. (Vazquez, s.f.).

Figura 28: Fases de medición

Fase 1: Lineamientos Modelo de contexto -Estrategia de Requerimientos funcionales medición Modelo de piezas de software y requisitos de medición Requerimientos Fase 3: Fase 2: Modelo genérico funcionales bajo -Requerimientos funcionales Medición el Modelo Mapeo COSMIC Tamaño funcional expresado en puntos de función COSMIC (CFP)

El proceso de medición COSMIC

Nota: Tomado de PMOinformatica, 2018

Visión general del método de medición

Objetivo de la medición

Toda medición depende de los objetivos que la motivaron, el primer insumo en la medición del tamaño funcional usando el método de COSMIC es su objetivo.

Requerimientos funcionales

El objetivo de la medición son los requerimientos funcionales. Cuando se trata de una función, se debe considerar su usuario, ya que los requerimientos funcionales describen lo que el software debe hacer para sus usuarios. Ellos son los destinatarios y remitentes de los datos del software que está siendo medido. Teniendo el usuario como referencia, la medición debe desconsiderar aspectos técnicos o de calidad que influyen en cómo se mide el software. Por esto, la función es relativa al proceso de información que el software debe ejecutar para sus usuarios.

La medición

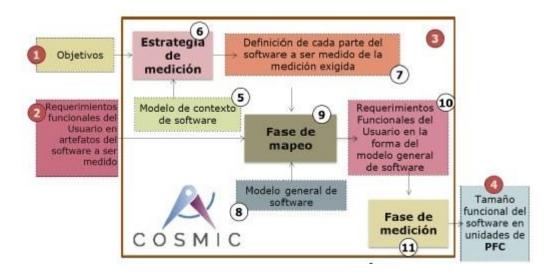
El método de medición consiste en un conjunto de modelos, principios, reglas y procedimientos que se aplican a los dos insumos mencionados anteriormente. Todo esto, con el propósito de generar el valor de una magnitud para la funcionalidad entregada por el software expresado en puntos de función COSMIC.

El resultado de la medición

El resultado de la medición es el valor de una cantidad de funcionalidad entregada por el software en puntos de función COSMIC.

Tipos de requerimientos

Requisitos no funcionales NFR


Cualquier otro requisito o restricción de orden general en el sistema o proyecto, excepto aquellos que evolucionan en FUR.

Requisitos funcionales FUR

Requisitos específicos de una tarea o servicio del usuario describiendo lo que el software debe hacer.

Proceso de medición

Figura 29: El proceso de medición COSMIC.

Nota: Tomado de Vázquez, 2015

2.25.1. Método COSMIC. Fase 1: Estrategia de medición

Lo primero que se realiza en una medición y estimación de software con COSMIC, es determinar qué es lo que se va a medir.

Técnica de medición estándar de las funciones de un software desde el punto de vista de un usuario o método estándar de medición de software que cuantifica los Requisitos Funcionales del Usuario (FUR).

Una medición de software depende del punto de vista de lo que definimos como usuarios funcionales, por ejemplo, personas, dispositivos de hardware u otros sistemas que interactúan con el software.

En esta primera fase se define el propósito y alcance de la medición de software, que incluye cuales son los requerimientos funcionales de usuario que se van a medir, quienes son los usuarios funcionales y otros parámetros. Previo a esto, es necesario haber aplicado técnicas para el levantamiento de requerimientos de software.

Es importante dejar documentados los parámetros de la medición de software, para asegurar que esta pueda ser interpretada adecuadamente por quienes harán uso de ella para realizar las estimaciones y presupuestos.

2.25.2. Método COSMIC. Fase 2: Mapeo

En una medición COSMIC, el mapeo se realiza para crear un modelo COSMIC de los requerimientos funcionales de usuario.

El punto de partida para el mapeo son los artefactos disponibles, como por ejemplo un esquema o especificación de requerimientos detallada, modelos de diseño como por ejemplo los casos de uso, software que está instalado físicamente, entre otros.

Para elaborar este modelo, se utilizan los principios del Modelo genérico de software COSMIC, aplicados a los requerimientos de software que se van a medir.

El modelo de requerimientos de software COSMIC tiene 4 principios:

- La funcionalidad de software está comprendida de procesos funcionales. La tarea de cada proceso funcional es responder a un evento ocurrido fuera de la frontera del sistema (el mundo de los usuarios funcionales).
- Los procesos funcionales están compuestos de sub-procesos:
 Cada sub-proceso puede mover datos o manipular datos.
 - Los sub-procesos de movimiento de datos que mueven datos de un usuario funcional a un proceso funcional se les llaman "Entradas".
 - Los sub-procesos que mueven datos desde un proceso funcional hacia el exterior se les llaman salidas.
 - Los sub-procesos que mueven datos hacia un almacén de datos se les llaman "Escrituras" mientras que a los que mueven datos desde dichos almacenes se les conoce como "lecturas".
- Cada movimiento de datos (Entrada, salida, lectura o escritura) moviliza solamente un grupo de datos, cuyos atributos describen un solo objeto de interés.

 Se asume que la manipulación de datos forma parte de las entradas, salidas, lecturas o escrituras, por lo tanto, estas no se miden por separado (En la medición solo se cuentan los movimientos de datos).

Se entiende que un proceso funcional termina su ejecución cuando ha realizado todos los sub-procesos necesarios para responder a los datos que recibió del evento.

2.20.3. Método COSMIC. Fase 3: Medición

La unidad de medida del método COSMIC es el "punto de función COSMIC" (CFP). Cada movimiento de datos es medido como un (1) CFP es la unidad de medida del método.

La medición de la nueva pieza de software se realiza identificando todos los movimientos de datos, es decir todas las entradas, salidas, lecturas y escrituras de cada proceso funcional. Luego sumándolas todas.

Todo proceso funcional debe tener al menos dos movimientos de datos (al menos una entrada y una salida o una escritura). Solo de esta forma se garantiza que el proceso funcional modelado proporciona un servicio completo. Por lo tanto, el tamaño funcional mínimo de un proceso es de 2 CFP.

No existe un límite superior al tamaño de un proceso funcional.

Para realizar mediciones sobre mejoras a piezas de software existente, se identifican todos los movimientos de datos que se van a agregar, modificar o eliminar, sumándolos todos en cada uno de sus procesos funcionales. El tamaño mínimo de una modificación es de un CFP.

La medición se realiza con el objetivo de:

- Evaluar el desempeño mediante la relación entre la cantidad de horas invertidas y la cantidad de puntos función COSMIC medidos.
- Re-evaluar los indicadores de productividad para que pasen a incluir el desempeño del proyecto que acaba de terminar.

 Re-evaluar la cantidad de puntos función COSMIC que corresponden en promedio a los procesos y a los conceptos de negocio conforme al nivel de información disponible en los diferentes puntos que se desea estimar.

$$\textbf{\textit{Costo por punto de funcion}} = \frac{\textit{Costo mes del equipo de trabajo}}{\textit{Puntos de funcion del mes}}$$

Costo de software = Tamaño del software * Costo por punto de funcion

$$\textbf{\textit{Duracion del desarrollo de software}} = \frac{\textit{Puntos de funcion de COSMIC}}{\textit{Puntos de funcion COSMIC mes}}$$

2.21. HERRAMIENTAS

2.21.1. JavaScript.

JavaScript es un lenguaje de «scripting» (una programación ligera) interpretado por casi todos los navegadores, que permite añadir a las páginas web efectos y funciones adicionales a los contemplados en el estándar HTML. (Rodríguez, 2005).

JavaScript es el nombre de un lenguaje de programación: es decir, un lenguaje formal que brinda instrucciones a una computadora (ordenador) para generar ciertos datos. Se utiliza sobre todo para producir recursos interactivos en una página web. (Pérez y Gardey, 2018).

Javascript fue creado por la compañía de software "Netscape Corporation" para que fuese colocado en su navegador 2.0 y que gracias a su simplicidad, aún continúa siendo una de las herramientas de gran utilidad, para la creación de páginas web que posean algo más que texto.

Características

- Es simple, no hace falta tener conocimientos avanzados de programación para aprender a manejar JavaScript y es recomendado por muchos expertos a la hora de encontrar un lenguaje para comenzar a programar.
- Maneja objetos dentro de la página Web y sobre ese objeto podemos definir diferentes eventos que facilitan la programación de páginas interactivas, a la vez

que evita la posibilidad de ejecutar comandos que puedan ser peligrosos para el equipo del usuario, tales como formateo de unidades, modificar archivos y mucho más.

- Es dinámico, responde a eventos en tiempo real como presionar un botón, pasar el puntero del mouse sobre un determinado texto o el simple hecho de cargar la página o caducar un tiempo. Con esto podemos cambiar totalmente el aspecto de nuestra página al gusto del usuario, evitándonos tener en el servidor una página para cada gusto, está formado en su totalidad por objetos.
- Existen un montón de tecnologías utilizadas en varios campos basadas en JavaScript, algunos ejemplos son Node, Vue o React, este último creado por Facebook.
- JavaScript usa prototipos en vez de clases para el uso de herencia.
- Es compatible con gran parte de la estructura de programación de C (sentencias if, bucles for, sentencias switch, etc.).

Sintaxis

Las normas básicas que definen la sintaxis de JavaScript son las siguientes:

- No se tienen en cuenta los espacios en blanco y las nuevas líneas: como sucede con XHTML, el intérprete de JavaScript ignora cualquier espacio en blanco sobrante, por lo que el código se puede ordenar de forma adecuada para entenderlo mejor (tabulando las líneas, añadiendo espacios, creando nuevas líneas, etc.).
- Se distinguen las mayúsculas y minúsculas: al igual que sucede con la sintaxis de las etiquetas y elementos XHTML. Sin embargo, si en una página XHTML se utilizan indistintamente mayúsculas y minúsculas, la página se visualiza correctamente, siendo el único problema la no validación de la página. En cambio, si en JavaScript se intercambian mayúsculas y minúsculas el script no funciona.
- No se define el tipo de las variables: al crear una variable, no es necesario indicar
 el tipo de dato que almacenará. De esta forma, una misma variable puede
 almacenar diferentes tipos de datos durante la ejecución del script.

- No es necesario terminar cada sentencia con el carácter de punto y coma (;):
 en la mayoría de lenguajes de programación, es obligatorio terminar cada sentencia
 con el carácter (;). Aunque JavaScript no obliga a hacerlo, es conveniente seguir la
 tradición de terminar cada sentencia con el carácter del punto y coma (;).
- Se pueden incluir comentarios: los comentarios se utilizan para añadir información en el código fuente del programa. Aunque el contenido de los comentarios no se visualiza por pantalla, sí que se envía al navegador del usuario junto con el resto del script, por lo que es necesario extremar las precauciones sobre la información incluida en los comentarios.
- Variables: var = "Hola", n=103
- Condiciones: if(i<10){ ... }
- Ciclos: for(i; i<10; i++){ ... }
- Arreglos: var miArreglo = new Array("12", "77", "5")
- Funciones: Ppopias del lenguaje y predefinidas por los usuarios
- Comentarios para una sola línea: // Comentarios
- Comentarios para varias lineas:
 /*Comentarios*/
- Permite la programación orientada a objetos: document.write("Hola");
- Las variables pueden ser definidas como: string, integer, float, bolean simplemente utilizando "var". Podemos usar "+" para concatenar cadenas y variables.

Clases del lenguaje

- Arrays.- Permite almacenar un conjunto de datos homogéneo, es decir, todos ellos del mismo tipo y relacionados.
- Boolean.- Es una clase de JavaScript que permite crear valores boleanos a partir de valores no boleanos.
- Date. Representa fecha y hora de un instante dado.

- Function.- Permite la creación de funciones, ya sean con nombre o anónimas.
- Math.- Proporciona los mecanismos para realizar operaciones matemáticas.
- Number.- Proporciona el manejo de datos y constantes numéricas.
- Object.- Un objeto es una entidad independiente con propiedades y tipos.
- Strings.- Se usa para manipular cadenas de caracteres.

2.21.2. Servidor Virtual Privado VPS

La división del servidor dedicado en partes muchos más grandes que un hosting hacen a los vps en servidores semicompartidos porque comparte menos recursos que un servidor compartido, permitiendo que cada vps puede usar un sistema operativo diferente, recursos y banda ancha diferente, pero dependiendo así del servidor dedicado (Cedeño, 2015).

Un VPS o Servidor Privado Virtual es un tipo de hosting que te proporciona una partición privada con recursos dedicados dentro de un servidor que tiene múltiples usuarios (Deyimar, 2023)

Un VPS es un servidor que puede partirse en varios servidores y permite hospedar sitios web u otra aplicación de manera segura puede funcionar bajo su propio sistema operativo y ofrecen mayor espacio para su almacenamiento.

2.21.3. Visual Studio Code.

Visual Studio Code (VS Code) es un editor de código fuente desarrollado por Microsoft. Es software libre y multiplataforma, está disponible para Windows, GNU/Linux y macOS. VS Code tiene una buena integración con Git, cuenta con soporte para depuración de código, y dispone de un sinnúmero de extensiones, que básicamente te da la posibilidad de escribir y ejecutar código en cualquier lenguaje de programación (Flores, 2022)

Características de Visual Studio Code

 Tiene soporte nativo que tiene compatibilidad con múltiples lenguajes de programación.

- Visual Studio Code ayuda a detectar errores, cuenta con extensiones que ayudan a trabajar de manera más rápida y eficaz, además se puede configurar los temas a diferentes maneras.
- Se pueden abrir varios proyectos que contengan múltiples archivos/carpetas. Estos proyectos/carpetas pueden o no estar relacionados entre sí.

2.21.4. QGIS.

Quantum GIS (QGIS) es un Sistema de Información Geográfica de código abierto. El proyecto nació en mayo de 2002 y se estableció como un proyecto en SourceForge en junio del mismo año. QGIS actualmente corre en la mayoría de plataformas Unix, Windows, y OS X. QGIS está desarrollado utilizando el conjunto de herramientas Qt y C++. Esto significa que QGIS es ágil en su uso y tiene una agradable y fácil interfaz gráfica para el usuario (GUI). QGIS pretende ser un fácil uso de los GIS, proporcionando funciones y características comunes. (Slideshare., 2018).

QGIS es un Sistema de Información Geográfica de código abierto. El proyecto nació en mayo de 2002 y se estableció como un proyecto en SourceForge en junio del mismo año. Fue uno de los primeros ocho proyectos de la Fundación OSGeo y en 2008 oficialmente superó la fase de incubación.

- QGIS actualmente funciona en la mayoría de plataformas Unix, Windows, GNU/Linux, BSD, macOS y Android en fase experimental.
- QGIS ha alcanzado un punto en su evolución en el que está siendo usado por muchos para sus necesidades diarias de visualización de datos SIG.
- QGIS admite diversos formatos de datos ráster y vectoriales, pudiendo añadir nuevos formatos usando la arquitectura de complementos.
- QGIS se distribuye bajo la Licencia Pública General GNU (GPL). El desarrollo de QGIS bajo esta licencia significa que se puede revisar y modificar el código fuente y garantiza que usted, como usuario, siempre tendrá acceso a un programa de SIG que es libre de costo y puede ser libremente modificado.

Características de Qgis.

- Soporte a datos vectoriales y raster.
- Soporte a tablas de datos no espaciales.
- Integración con GRASS.
- Herramientas para la digitalización de información.
- Herramientas impresión de mapas.
- Soporte a WMS y WFS.
- Edición de datos.
- Proyección de datos al vuelo.
- Etiquetado de elementos.

Funciones de Qgis

- Herramientas de digitalización para formatos reconocidos OGR y capas vectoriales GRASS.
- Capacidad para crear y editar archivos shape y capas vectoriales GRASS.
- Complemento de georeferenciador para geocodificar imágenes.
- Herramienta GPS para importar y exportar formato GPX y convertir otros formatos GPS a GPX o descargar o subir directo a la unidad GPS (en Linux, usb se agregó a la lista de objetos GPS.).
- Apoyo para visualizar y editar datos de OpenStreetMap.
- Capacidad para crear tablas de base de datos espaciales desde archivos shape con el complemento de Administrados de BBDD.
- Mejor manejo de tablas de bases de datos espaciales.
- Herramientas para la gestión de tablas de atributos vectoriales.
- Opción para guardar capturas de pantalla como imágenes georeferenciadas.

 Herramienta para exportar DXF con capacidades aumentadas de explorar estilos y plugins que realizan funciones parecidas a CAD.

GRASS (Geographic Resources Analysis Support System) es un software SIG bajo licencia GNU General Public License (GPL). Puede soportar información tanto ráster como vectorial y transformarla en ambos formatos, posee herramientas de procesado digital de imágenes. Es el programa ideal para usar en aplicaciones ingenieriles y de planificación territorial.

GPS o sistema de posicionamiento global, es un sistema de navegación global por satélite que proporciona información relativa a ubicación, velocidad y sincronización horaria. Este sistema está constituido por tres segmentos: el segmento espacial, el segmento de control y el segmento del usuario.

GPX es un formato de archivo que permite almacenar, intercambiar y procesar información de mapas en dispositivos GPS (geodatos), teléfonos inteligentes y computadoras. Incluye soporte para caminos, rutas y puntos de acceso. Se trata de un formato abierto y de dominio público sin tarifas de licencia.

OpenStreetMap (OSM) es un proyecto colaborativo para crear mapas *y* ofrecer datos geográficos editables y libres, que está siendo en gran medida elaborado desde cero por voluntarios y publicado con una licencia de contenido abierto.

SHAPEFILE es un formato de almacenamiento de datos vectoriales de Esri para almacenar la ubicación, la forma y los atributos de las entidades geográficas. Se pueden representar por medio de puntos, líneas o polígonos (áreas).

DXF drawing exchange format", o bien dibujo de intercambio de formato según su traducción, se usa para dibujos o diseños asistidos por computadora, es decir, para CAD. Autodesk, la propietaria y desarrolladora del famoso software AutoCAD, fue la que creó este formato.

CAD *computer-aided design*, (diseño asistido por computadora) ayuda en la creación, modificación, análisis u optimización de un diseño ya sea en 2D y 3D. Es utilizado actualmente en múltiples áreas de la industria como la industria mecánica,

automotriz, naval, aérea, aeroespacial, de medicina, de construcción y arquitectura, tecnología de información, publicidad, moda, interiorismo.

2.21.5. XAMPP.

XAMPP es una distribución de Apache que incluye varios softwares libres y programas que lo componen (Linux, Apache, Mysql/ MariaDB, PHP, Perl), que permite la creación y prueba de páginas web u otros elementos de programación sin tener acceso a internet.

El nombre de XAMPP se origina de las principales herramientas que contiene.

X: Hace referencia a los diferentes sistemas operativos como ser: Linux, Windows, Ubuntu, etc.

A: Apache es el servidor web de código abierto que es usado para la entrega de contenidos web.

M: Cuenta con las bases de datos más populares del mundo como ser Mysql y en las versiones más recientes se incorporó MariaDB.

P: Xampp utiliza el lenguaje de programación PHP que es muy conocido y soporta varios sistemas bases de datos.

P: Perl es otro lenguaje de programación de Xampp, pero esta vez enfocado en la administración del sistema y programación de red.

2.21.6. Google Earth Engine.

Google Earth Engine es una plataforma de geomática basada en la nube que permite a los usuarios visualizar y analizar imágenes de satélite de nuestro planeta. Los científicos y las organizaciones sin ánimo de lucro utilizan Google Earth Engine para llevar a cabo estudios de teledetección remota, predecir brotes de enfermedades, gestionar recursos naturales, etc. Los estudiantes pueden acceder a esta información para participar en los debates y convertirse en científicos de datos.

Google Earth Engine (GEE) es una plataforma web que provee imágenes satelitales, datos vectoriales, computación en la nube y posibilita el acceso a algoritmos para el procesamiento de esos datos (Kumar & Mutanga, 2018). GEE combina un catálogo de imágenes satelitales y de datasets geográficos de un volumen de varios peta bytes de información, comprende una capacidad de análisis a escala global y está orientado para ser usado por científicos, investigadores y desarrolladores para detectar cambios, tendencias y cuantificar las diferencias que ocurren sobre la superficie terrestre (Google, 2019). (Arenas et al., 2019).

Podemos dividir los diferentes algoritmos en categorías:

- Machine Learning: realizar clasificación supervisada y no supervisada, modelos de TensorFlow.
- **Imágenes**: Resumen de imagen, visualización, información y metadatos, operaciones matemáticas, cálculo de gradientes, transformaciones espectrales.
- Colecciones de imágenes: información y metadatos, filtrado, mosaicado, visualización.
- Geometrías, objetos geográficos y colecciones de objetos geográficos: operaciones geométricas, filtros, interpolaciones de vectorial a raster.
- Reducciones: estadísticas de la región de una imagen, conversión vectorial a raster y viceversa, regresión lineal.
- Uniones: uniones simples, uniones espaciales, uniones internas.
- Gráficos: histogramas, series de tiempo en regiones de imágenes, gráficos de series de tiempo.
- Matrices: transformación de matrices.
- Algoritmos especializados: algoritmos Landsat y Sentinel-1.
- Gestión de activos: importación de archivos raster, importación de tablas de datos, exportación de datos.

¿Qué ventajas tiene esta plataforma?

 Earth Engine nos permite cargar nuestros propios datos ráster y vectoriales (por ejemplo, archivos GeoTIFF o Shapefile) para realizar los análisis.

- Acceso a un catálogo de datos, que incluye todo el catálogo Landsat de EROS
 (Earth Resources Observation and Science) (USGS / NASA), numerosos conjuntos
 de datos MODIS, datos Sentinel 1, 2, 3 y 5P, datos NAIP (National Agriculture
 Imagery Program), datos de precipitación, datos de temperatura de la superficie del
 mar, datos climáticos de CHIRPS (Climate Hazards Group InfraRed Precipitation
 with Station data) y datos de elevación.
- Podemos mostrar los resultados de nuestros análisis en Google Maps o en cualquier otra plataforma de mapas, como ArcGIS o QGIS.
- Earth Engine es gratuito para investigación, educación y para usos sin ánimo de lucro. Para aplicaciones comerciales, se permite la evaluación de Earth Engine. (Morales, s.f.).

2.21.7. GeoServer

Es un servidor de mapas open source, escrito en Java, de código abierto que permite el intercambio de datos geoespaciales mediante estándares OGC. Está diseñado, para interoperar entre distintas plataformas y publicar datos geoespaciales.

GeoServer es una aplicación compatible con OGC de una serie de estándares abiertos como Web Feature Service (WFS), Web Map Service (WMS) y Web Coverage Service (WCS). (IDE Chile, Infraestructura de Datos Geospaciales, s.f.).

GeoServer es un servidor web que facilita la publicación de datos espaciales en Internet

- Espacio de trabajo: es un contenedor para agrupar capas similares, se pueden almacenar capas y datos asociados a un trabajo.
- Almacén de datos: contiene datos geográficos ya sean raster o vectoriales, pueden ser de tipos de datos PostGIS, GeoTIFF, GeoPackage.
- Capas: una capa son datos raster y vectoriales que contienen elementos geográficos y están asociados a un espacio de trabajo.
- Grupos de capas: pueden ser organizados en una estructura jerárquica permiten distintos tipos de geometría y contenido.

• Estilo: se especifica usando documentos de estilo XML y SLD especificando el estilo de puntos, líneas y polígonos, así como raster y etiquetas de texto.

2.21.8. FileZilla

FileZilla es una aplicación para la transferencia de archivos por FTP. Es una aplicación gratuita y de código abierto, que comenzó como un proyecto en una clase de computación en enero de 2001. Fue iniciado por Tim Kosee junto con dos compañeros más.

Permite transferir archivos desde una computadora local, hacia uno o más

Servidores FTP (y viceversa) de forma sencilla. (Alegsa, 2010).

FileZilla es uno de los clientes para FTP más populares Un cliente FTP no es más que una aplicación que se conecta a un servidor FTP para gestionar y acceder a los archivos. Y un servidor FTP es otra aplicación -o servicio- que usa el protocolo FTP (File Transfer Protocol) para compartir archivos con otros usuarios. (Ramírez, 2019).

CAPÍTULO III PISEÑO METOROLÓGICO

3. DISEÑO METODOLÒGICO

3.1 INTRODUCCIÓN

En el presente capitulo se pone en práctica los conceptos de acuerdo a los capítulos anteriores respecto al desarrollo del modelo de análisis forestal en base a Google Earth Engine.

Google Earth Engine que es una plataforma en la nube que nos brinda información, permite visualizar y analizar imágenes satelitales a nivel mundial, cuenta con diferentes ámbitos de estudio ya sea climatológico, hidrológico, focos de calor, sequias, cultivos, cambios en la superficie terrestre.

El presente modelo debe ser realizado mediante pasos metodológicos que exige el tratamiento de datos confiables y actualizados para lo cual se considera la metodología de investigación científica que plantea Hernández, Fernández, Baptista

3.2 ETAPAS DEL MÈTODO CIENTÌFICO

Figura 30: Etapas del método científico

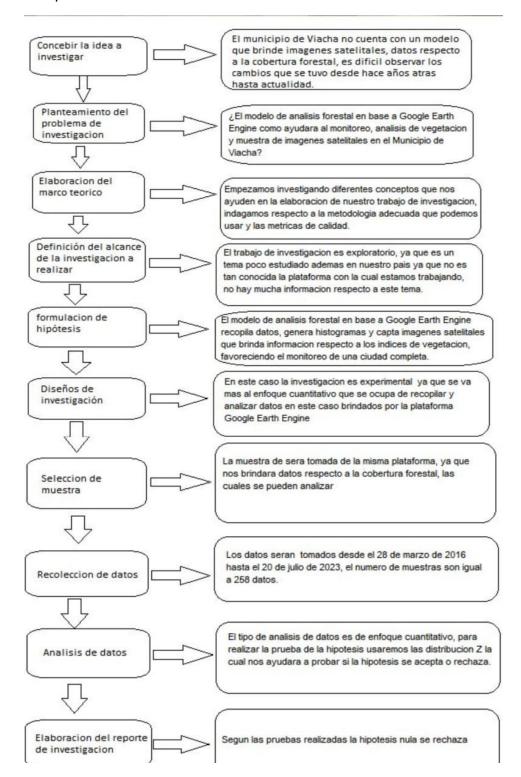
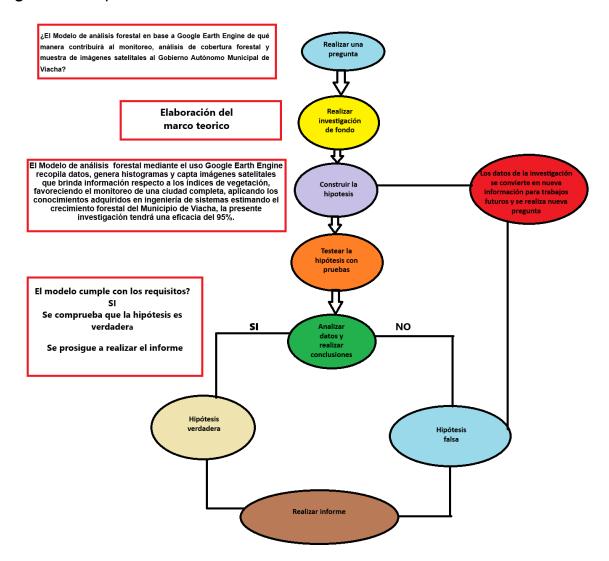
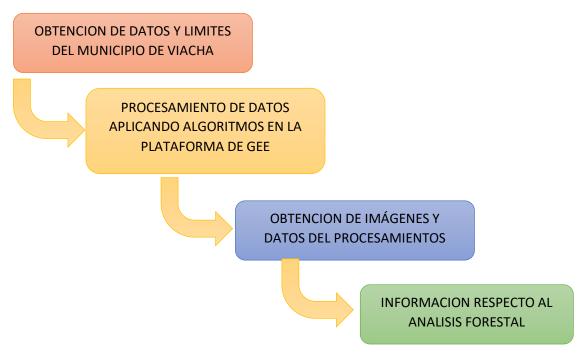
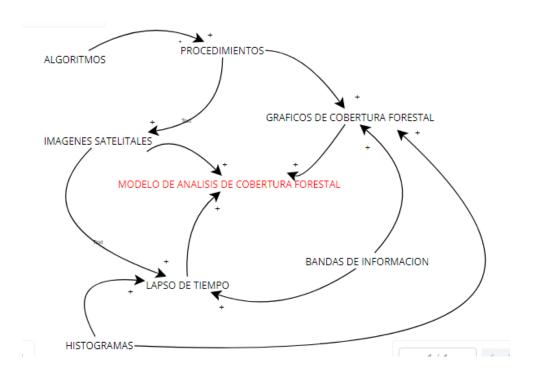




Figura 31: Esquema del método científico.


• Esquema del modelo

3.3 ENFOQUE CAUSAL

Ayuda a probar la relación de causa y efecto de la investigación que se utiliza para comprender que variables son causa de lo que se predice (el efecto).

Figura 32: Diagrama causal

El trabajo de investigación tiene un nivel de investigación cuantitativo ya que se trabaja con datos numéricos que se obtienen directamente del modelo en diferentes momentos del tiempo, los cuales se pueden comportar de distintas maneras a través del tiempo, (diaria, mensual, semestral, anual, etc) de manera que se pueda probar la hipótesis.

La investigación cuantitativa está directamente basada en la teoría positivista del conocimiento, la cual sostiene que todas las "cosas" o fenómenos que estudiaban las ciencias eran medibles. Este paradigma utiliza preferentemente información cuantitativa o cuantificable para describir o tratar de explicar los fenómenos que estudia. Usa la recolección de datos para probar hipótesis, con base en la medición numérica y el análisis estadístico para establecer patrones de comportamiento y probar teorías.

3.4 Metodología UWE

Es una metodología detallada que cubre todo el ciclo de vida del software.

3.3.1. Modelo de requisitos:

Requerimientos del Usuario

Tabla 7 Requerimientos del usuario

REF	FUNCION	CATEGORIA
R1.1	Observar imágenes satelitales	Evidente
R1.2	Poseer archivos shp de lugares estratégicos del	Evidente
	municipio Viacha	
R1.3	Obtener datos mediante gráficos estadísticos	Evidente
	sobre los índices de vegetación	
R1.4	Visualizar Time Lapse	Evidente
R1.5	Obtener información respecto al municipio	Evidente

Nota: Especifica el comportamiento externo del sistema.

• Requerimientos Funcionales

Tabla 8 Requerimientos funcionales

REF	FUNCION	CATEGORIA
R2.1	Los usuarios no tienen la necesidad de logearse	Evidente
R2.2	El modelo actualiza los datos diariamente	Evidente
R2.3	El histograma de índices de vegetación mostrara	Evidente
	datos actualizados que podrán ser descargados	
	en png, csv, svg.	
R2.4	Se observara el time lapse depende de las	Evidente
	coordenadas que se les aplique	
R2.5	Se muestra imágenes satelitales despejadas de	Evidente
	nubes menor al 10%	
R2.6	La información del municipio es obtenida de	Evidente
	fuentes confiables	
R2.7	Las capas disponibles en el Geoserver podrán ser	Evidente
	visualizadas y descargadas.	

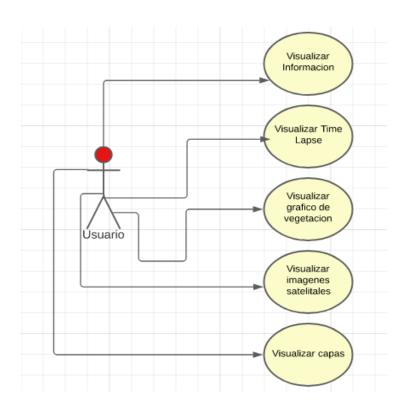
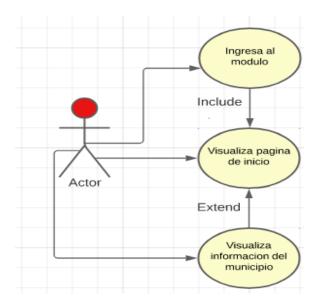

• Requerimientos no funcionales

Tabla 9 Requerimientos No Funcionales

REF	FUNCION	CATEGORIA
R3.1	La velocidad de la Apps Google Earth Engine	Evidente
	depende de la velocidad del internet	
R3.2	Exactitud con los datos del histograma de índices	Evidente
	de vegetación.	
R3.3	Enlaza la página web con la plataforma de Google	Evidente
	Earth Engine	
R3.4	Enlaza la página web con el GeoServer	Evidente

3.3.2. Casos de Uso

Figura 33: Modelo de Google Earth Engine

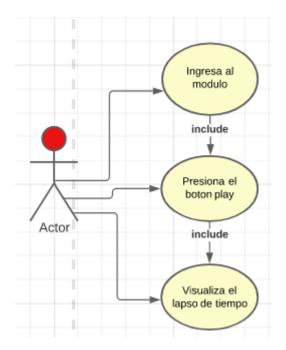


> Descripción de caso de uso: Visualiza información

Tabla 10 Caso de uso Visualiza información.

Caso de uso	Visualizar información		
Actores	Usuarios		
Tipo	Opcional		
Descripción	Ingresa al módulo.		
	 Visualizar la página de inicio. 		
	 Visualiza la información respecto al municipio. 		

Figura 34: Visualiza información.



> Descripción de caso de uso: Visualiza Time Lapse

Tabla 11 Caso de uso visualiza Time Lapse

Caso de uso	Visualizar Time Lapse		
Actores	Usuarios		
Tipo	Opcional		
Descripción	 Ingresa al módulo. 		
	 Presiona el botón play, 		
	 Visualiza el lapso de tiempo. 		

Figura 35: Visualiza Time Lapse

> Descripción de caso de uso: Visualiza gráfico de cobertura

Tabla 12 Caso de uso visualizar gráfico de análisis forestal.

Caso de uso	Visualizar gráfico de cobertura forestal		
Actores	Usuarios		
Tipo	Opcional		
Descripción	Ingresa al módulo.		
	 Presiona el botón NDVI. 		
	 Visualiza el mapa NDVI del municipio. 		
	 Presiona un punto en el mapa. 		
	 Muestra el grafico de vegetación. 		
	 Presiona el icono de flecha en el histograma. 		
	 Selecciones en qué tipo de archivo desea 		
	descargar csv, svg o png.		
	 Verifica los datos descargados 		

Ingresa al modulo

Include

Presiona el boton NDVI

Visualiza el mapa NDVI

Include

Include

Include

Muestra el grafico de vegetacion

Verifica datos descargados

Include

Verifica datos descargados

Include

Figura 36: Gráfico de cobertura forestal.

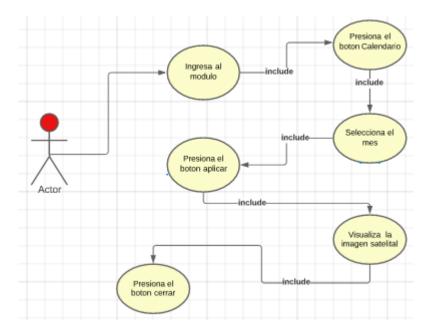
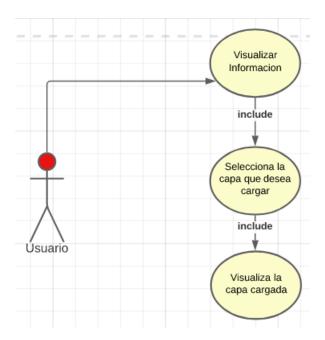

Descripción de caso de uso: Imágenes satelitales

Tabla 13 Caso de uso imágenes satelitales.

Caso de uso	Imágenes satelitales			
Actores	Usuarios			
Tipo	Opcional			
Descripción	Ingresa al módulo.			
	 Presiona el botón Calendario. 			
	• Selecciona el mes del cual quiere obtener las			
	imágenes.			
	 Presiona el botón de aplicar. 			
	 Visualiza la imagen satelital. 			

Presiona en cerrar, y se cierra el panel de calendario

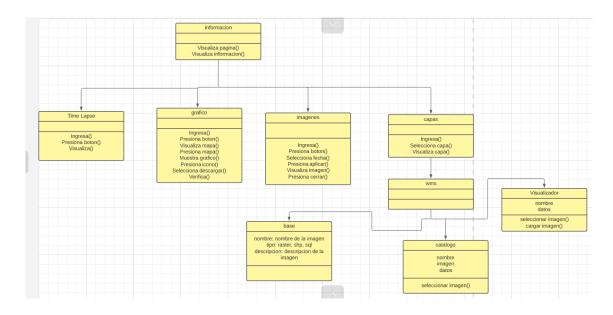
Figura 37: Visualizar Imágenes Satelitales



> Descripción de caso de uso: Visualizar capas

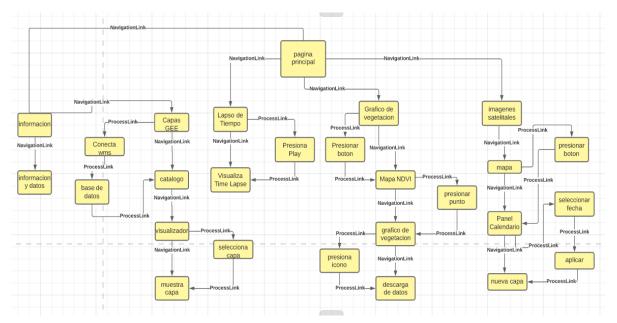
Tabla 14 Caso de uso Visualizar capas.

Caso de uso	Visualizar capas		
Actores	Usuarios		
Tipo	Opcional		
Descripción	Ingresa al módulo.		
	 Selecciona que capa desea cargar. 		
	Visualiza la capa cargada.		


Figura 38: Visualiza Capas

3.3.3. Modelo de contenido

Se aplican los requisitos reflejados en el modelo de requisitos donde se observan las clases que forman parte del sistema con sus respectivos atributos y procesos.


Figura 39: Modelo de Contenido

3.3.4. Modelo de navegación

Es la principal guía para los usuarios define el acceso a la información y funciones describe las rutas que el usuario debe tomar para usar la página web.

Figura 40: Modelo de navegación

3.3.5. Modelo de presentación

Se muestra como está estructurado el sistema provee la información que se brinda en el modelo de navegación, presenta una visión abstracta de la página web.

Figura 41: Modelo de presentación de la página principal

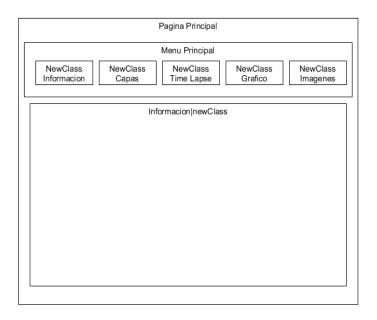


Figura 42: Modelo presentación del módulo de capas

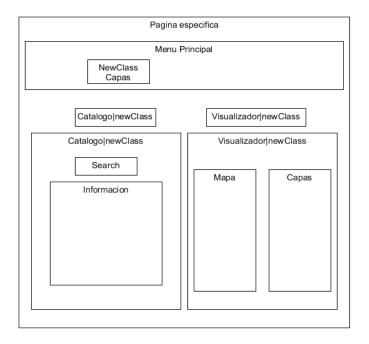


Figura 43: Modelo de presentación del módulo Time Lapse.

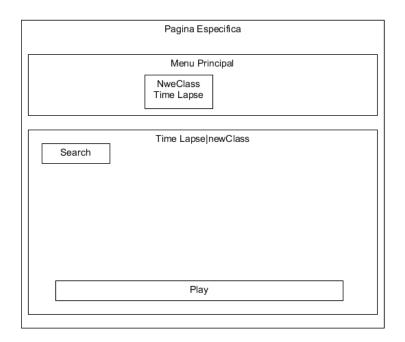


Figura 44: Modelo de presentación del módulo de Cobertura Forestal

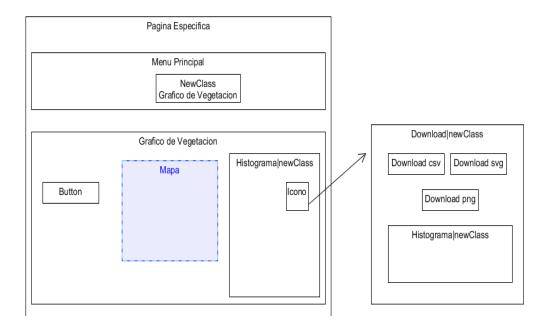
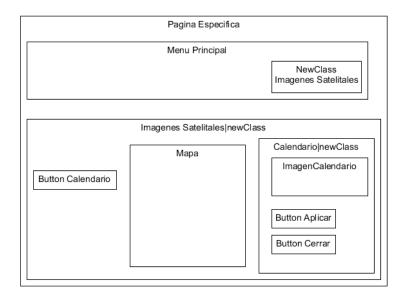
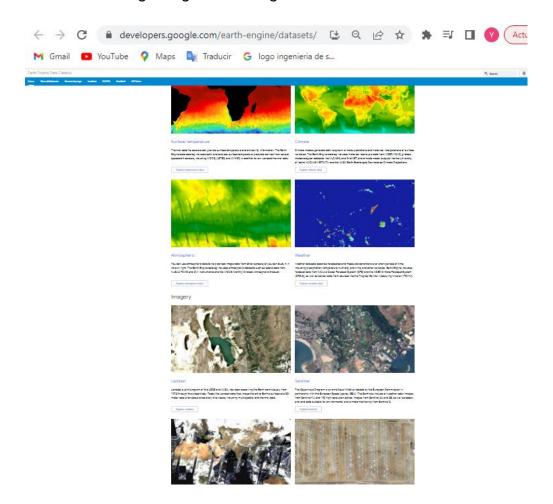



Figura 45: Modelo de presentación del módulo de imágenes satelitales.


3.4. METODOLOGÍA DE TELEDETECCIÓN PARA EL PROCESAMIENTO DE IMÁGENES DE SATÉLITE

3.4.1. Fase de descarga de imágenes

Primeramente, en esta fase seleccionamos la colección de Google Earth Engine que nos ayudara a realizar el trabajo de investigación en este caso utilizamos Sentinel 2.

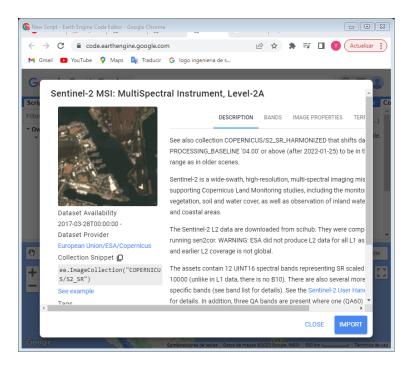

Seguidamente ingresamos a la página de GeoBolivia con el objetivo de encontrar los límites del Municipio de Viacha, para lo cual logramos obtener los municipios a nivel nacional, realizamos la descarga y logramos nuestro objetivo procesando la imagen en QGIS, una vez obtenido el límite de Viacha subimos las capas en shp a Google Earth Engine y proseguimos a trabajar con los limites.

Figura 46: Data Catalog Google Earth Engine

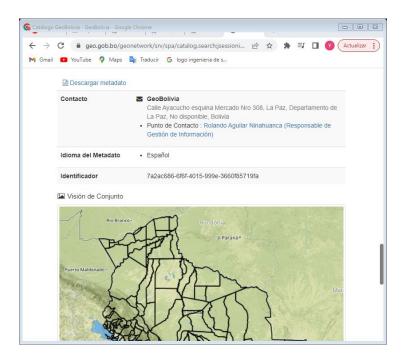

Nota: Ingresamos a Google Earth Engine al Catálogo de Datos y visualizamos la colección con la cual deseamos trabajar.

Figura 47: Datos Sentinel 2

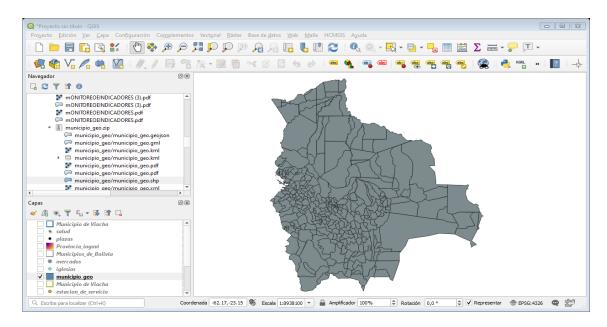

Nota: Importamos la colección para trabajar en Code Editor

Figura 48: Catálogo de GeoBolivia Municipios de Bolivia

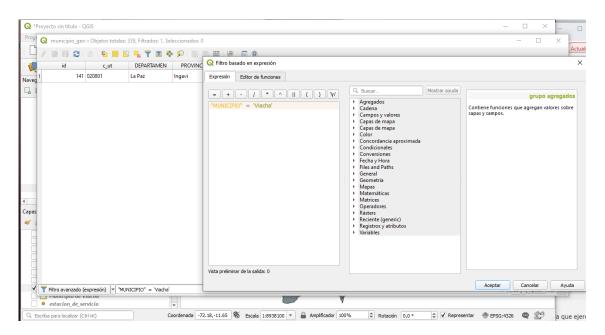

Nota: Se descarga la capa de municipios de Bolivia en Geo Bolivia para procesar en QGIS.

Figura 49: Capa de GeoBolivia en QGIS.

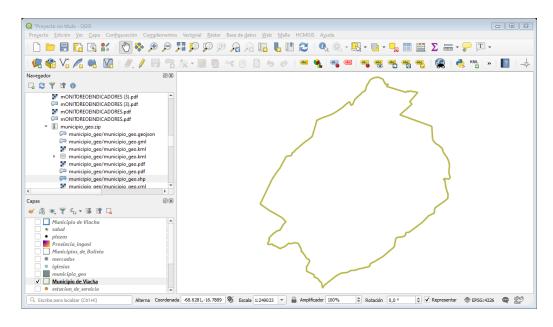

Nota: Se carga el archivo shp en Qgis.

Figura 50: Procesamiento de la capa de Geo Bolivia.

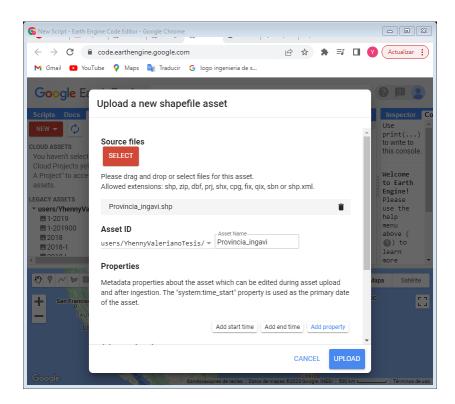

Nota: Se procesa los límites mediante los atributos el municipio de Viacha

Figura 51: Capa procesada del Municipio.

Nota: Se guarda la capa procesada en un archivo en shp.

Figura 52: Subir archivo shp a Google Earth Engine.

Nota: Seleccionamos el archivo shp, le añadimos el nombre y presionamos UPLOAD y el archivo se comenzará a subir a la plataforma Google Earth Engine.

3.4.2. Fase de Pre – procesamiento

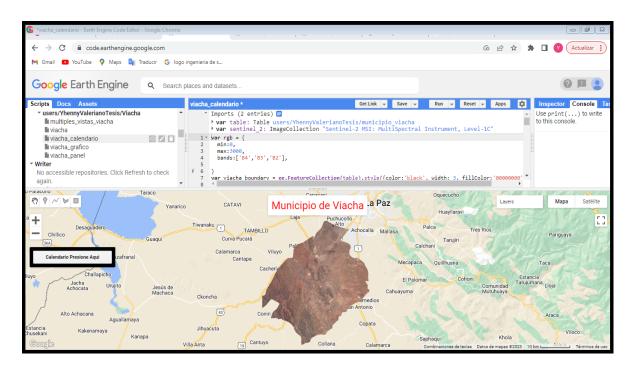
Tabla 15: Algoritmos utilizados para el desarrollo del modelo.

FUNCIÓN	ALGORTIMOS
Declaración de	<pre>var table: Table u var sentinel 2: Im</pre>
variables	var imageVisParam:
Corrección atmosférica	.filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE',10))
Reducir una colección	
de imágenes	<pre>var viacha_sentinel_mediana = viacha_sentinel.median();</pre>
calculando la mediana	
Recorte de mapas	<pre>var viacha_sentinel_clip = viacha_sentinel_mediana.clip(table);</pre>
Re muestreo imagen	<pre>var rgb = { min:300,</pre>
sentinel	max:5000, bands:['B4','B3','B2'],
	}
Re muestreo imagen	<pre>var visparm = {bands: ['NDVI'], min:-0.15, max: 0.9, palette ['red', 'black', 'white', 'green', 'blue', 'yellow']}</pre>
ndvi	P [,,, 8,
Agregar capas al mapa	<pre>Map.addLayer(viacha_sentinel_clip, rgb);</pre>
Centrar mapas	Map.centerObject(table, 11);
Colección de	on FortunaCallection(table)
características	ee.FeatureCollection(table)
Filtrar geometría	ee.Filter.bounds(roi)
Control deslizante de	ui.DateSlider
fecha	
Devolver fecha	ee.Date(Date.now())
Etiqueta de texto	ui.Label
Botón	ui.Button
Eliminar del mapa	Map.remove(panel)
Devolver valores	.getValue()

Devuelve filtros	[ee.Filter.lt(
Filtrar metadatos	.filterMetadata
La diferencia	
normalizada se calcula	.normalizedDifference(['B8', 'B4'])
como (primero -	
segundo) / (primero +	
segundo).	
Devolver panel con	ui.Panel.Layout.flow
widgets	•
Devolución de llamada	Map.onClick
Establece el valor	
seleccionado y lo	.setValue
devuelve	
Generar grafico de una	
colección de imágenes	ui.Chart.image.series
Calcula la media	ee.Reducer.mean()
Establecer opciones	.setOptions
Devolver estilo del	Map.style()
mapa	·
Agrega un widget al	ui.root.insert
panel raíz	

> Extracción de la zona de interés

Imagen sentinel


Imagen NDVI

Con el siguiente código se logra generar la capa ndvi del Municipio de Viacha

3.4.3. Fase Retrieval

En esta fase se recupera la zona de interés a ser estudiada

Figura 53: Zona de estudio procesada en Google Earth Engine.

Nota: Subimos la zona de estudio a la plataforma y fusionamos con las colecciones de imágenes satelitales.

Figura 54: Imagen Sentinel e Imagen NDVI del municipio de Viacha

3.5. IMPLEMENTACIÓN

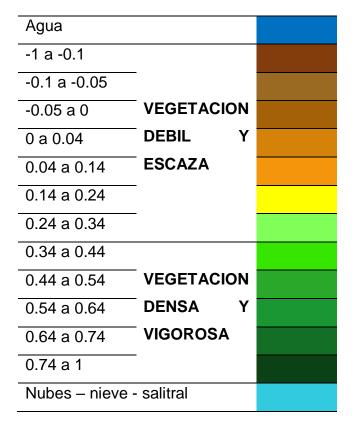
3.5.1. Obtención de gráfico de cobertura forestal

Mediante los siguientes gráficos se pueden obtener datos de la evolución de la cobertura forestal desde hace años atrás hasta la actualidad en el Municipio de Viacha, los cuales pueden ser descargados en diferentes formatos (CSV, SVG, PNG) para su respectivo análisis.

C (i) localhost:8081/viacha/grafico.htm M Gmail 💶 YouTube 💡 Maps 💁 Traducir 🔓 logo ingenieria de : GRÁFICO DE COBERTURA TERRESTRE **VIACHA** TAMBILLO INDICES DE COBERTURA FORESTAL ocalia COMUNIDAD Agua -0.05 a 0 0 a 0.04 0.04 a 0.14 0.34 a 0.44 0.44 a 0.54 0.54 a 0.64 0.64 a 0.74 0.74 a 1 Nubes - Nieve - Salitral

Figura 55: Modelo de cobertura forestal procesada en Google Earth Engine

Nota: Presionamos el botón NDVI para tener los gráficos.


Mediante el mapa NDVI se puede calcular los índices de vegetación en distintos puntos, presionando el botón NDVI se carga el nuevo Mapa NDVI con el cual se puede diferenciar los lugares con baja, media y alta cobertura forestal.

🖻 🌣 🗯 🗓 🚺 🕜 (Actualizar : M Gmail 🔼 YouTube 💡 Maps 🎥 Traducir 🔓 logo ingenieria de s.. **VIACHA** LAPSO DE TIEMPO GRÁFICO DE COBERTURA TERRESTRE Gráfico de Cobertura forestal del Municipio de Viacha 87 9 N V I INDICES DE COBERTURA FOREST Layers Мара Haz click en un punto en el mapa. Ion: -68.31922 lat: -16.68975 TAMBILLO Niveles de Vegetacion Agua Ø -1 a -0.1 NDVI Actual Presione Aqui -0.1 a -0.05 -0.05 a 0 0 a 0.04 0.04 a 0.14 0.14 a 0.24 0.24 a 0.34 J 2017 J 2018 J 2019 J 2020 J 2021 J 2022 0.34 a 0.44 0.44 a 0.54 0.54 a 0.64 0.64 a 0.74 0.74 a 1 Nubes - Nieve - Salitra Caluvo

Figura 56: Gráfico de cobertura forestal

Nota: Presionando en el botón del grafico podemos descargar en distintos formatos.

Tabla 16: índices de cobertura.

3.5.2. Implementación de algoritmos

Para la obtención de la capa del municipio de Viacha, en este caso se trabajó con el satélite de Sentinel, se procesa la capa despejando nubes y recortando la zona de estudio.

```
≎
viacha_grafico
    🔻 Imports (2 entries) 🗐
      var table: Table users/YhennyValerianoTesis/municipio viacha
      ▶ var sentinel_2: ImageCollection "Sentinel-2 MSI: MultiSpectral Instrument, Level-1C"
   1 * var rgb = {
       min:300,
       max:5000,
        bands:['B4','B3','B2'],
  6 }
      // IMAGENES
   8 var viacha_boundary = ee.FeatureCollection(table).style({color:'black', width: 3, fillColor:'000000000'});
   9 var roi = ee.Feature(viacha_boundary).geometry();
  10 var viacha_sentinel = sentinel_2.filter(ee.Filter.bounds(roi))
i 11 .filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE',10))
  12 var viacha_sentinel_mediana = viacha_sentinel.median();
  var viacha_sentinel_clip = viacha_sentinel_mediana.clip(table);
i 14 Map.addLayer(viacha_sentinel_clip, rgb)
15 Map.centerObject(table,10);
```

> Título de la capa

Mapa Ndvi

```
// MAPA NDVI
var coleccion = ee.ImageCollection('COPERNICUS/S2')
// silterBounds(table)
// filterMetadata('CLOUDY_PIXEL_PERCENTAGE', 'less_than', 10)
// war ndvi = o.normalizedDifference(['B8', 'B4'])
// var ndvi = o.normalizedDifference(['B8', 'B4'])
// return o.clip(table)
// return o.clip(table)
// war visparm = {bands: ['NDVI'], min:-0.15, max: 0.9, palette: ['red', 'black', 'white', 'green', 'blue', 'yellow']}
// MAPA NDVI
// NAPA N
```

> Panel

```
53 // PANEL
54 var panel = ui.Panel();
55 panel.style().set('width', '500px', 'height', '200px');
57 //TITULO DE PANEL
58 - var intro = ui.Panel([
59 - ui.Label({
       value: 'Gráfico de Cobertura forestal del Municipio de Viacha ',
       style: {fontSize: '20px', fontWeight: 'bold'}
61
62
     }),
63
     ui.Label('Haz click en un punto en el mapa.')
64 ]);
65 panel.add(intro);
66
```

Captura de coordenadas

```
// paneles para mantener los valores lon/lat
var lon = ui.Label();
var lat = ui.Label();
panel.add(ui.Panel([lon, lat], ui.Panel.Layout.flow('horizontal')));

// Registrar una llamada en el mapa por defecto para ser invocada cuando se haga clic en el mapa
// Registrar una llamada en el mapa por defecto para ser invocada cuando se haga clic en el mapa
// Actualiza el panel lon/lat con los valores del evento click.
lon.setValue('lon: ' + coords.lon.toFixed(2)),
lat.setValue('lat: ' + coords.lat.toFixed(2));
var point = ee.Geometry.Point(coords.lon, coords.lat);
```

Gráfico de cobertura forestal

```
// Crear un gráfico SENTINEL NDVI.
68
      var ndviChart = ui.Chart.image.series(coleccion.select('NDVI'), point, ee.Reducer.mean(), 10, 'system:time_start');
      ndviChart.setOptions({
       title: 'SENTINEL NDVI'
71
              hAxis: {title:'Indices de vegetacion', titleTextStyle: {italic: false, bold: true}},
72 -
              vAxis: {
               title: 'Niveles',
titleTextStyle: {italic: false, bold: true}},
73
74
75
     });
76
      panel.widgets().set(3, ndviChart);
77 });
78
79 Map.style().set('cursor', 'crosshair');
```

Botón NDVI

> Panel de colores

```
93 //panel d colores
       var legend = ui.Panel({style: {position: 'middle-right', padding: '8px 15px'}});
  96 - var makeRow = function(color, name) {
  97 var colorBox = ui.Label({
  98 +
          style: {color: '#ffffff',
  99
            backgroundColor: color,
 100
            padding: '10px',
            margin: '0 0 4px 0',
 101
 102
 103
         });
 104 -
        var description = ui.Label({
 105
         value: name,
 106 -
          style: {
          margin: '0px 0 4px 6px',
 107
 108
 109
        });
 110 -
       return ui.Panel({
          widgets: [colorBox, description],
 111
 112
          layout: ui.Panel.Layout.Flow('horizontal')}
 113 )};
 114
 115 - var title = ui.Label({
 116 value: 'Niveles de Vegetacion',
 117 -
       style: {fontWeight: 'bold',
 118
         fontSize: '16px',
          margin: '0px 0 4px 0px'}});
 119
 120
 121 legend.add(title);
i 122 legend.add(makeRow('red','0% Vegetacion'))
i 123 legend.add(makeRow('black','20% vegetacion'))
i 124 legend.add(makeRow('white','40% vegetacion'))
i 125 legend.add(makeRow('green','60% vegetacion'))
i 126 legend.add(makeRow('blue','80% vegetacion'))
i 127 legend.add(makeRow('yellow','100% Vegetacion'))
 128 Map.add(legend);
```

Ejecutando el anterior código se genera los gráficos de cobertura forestal, la cual nos genera los siguientes datos en distintas coordenadas del Municipio.

Tabla 17 Datos de cobertura forestal

LON: -68.28		LON:-68.29		LON:-68.28	
LAT: -16.54		LAT:-16.54		LAT:-16.55	
Mar28, 2016	0.327	Mar28,2016	0.251	Mar 28, 2016	0.382
May 4, 2016	0.263	May 4, 2016	0.332	May 4, 2016	0.25
May7, 2016,	0.262	May 7, 2016	0.25	May 7, 2016	0.209
May27, 2016	0.223	May 27, 2016	0.206	May 27, 2016	0.154
Jun13, 2016	0.192	Jun 13, 2016	0.152	Jun 13, 2016	0.13
Jun 16, 2016	0.196	Jun 16, 2016	0.119	Jun 16, 2016	0.142
Aug 25, 2016	0.157	Aug 25, 2016	0.1	Aug 25, 2016	0.145
Feb 1, 2017	0.272	Feb 1, 2017	0.407	Feb 1, 2017	0.194
Mar 20, 2017	0.358	Mar 20, 2017	0.477	Mar 20, 2017	0.648
May 9, 2017	0.299	May 9, 2017	0.371	May 9, 2017	0.607
Sep 21, 2017	0.21	Sep 21, 2017	0.278	Sep 21, 2017	0.271
Sep 24,2017	0.23	Sep 24, 2017	0.304	Sep 24, 2017	0.304
Oct 19, 2017	0.26	Oct 19, 2017	0.268	Oct 19, 2017	0.41
Mar 23, 2018	0.459	Mar 23, 2018	0.39	Mar 23, 2018	0.174
Apr 9, 2018	0.375	Apr 9, 2018	0.392	Apr 9, 2018	0.547
Apr 17, 2018	0.36	Apr 17, 2018	0.396	Apr 17, 201	0.533
Apr 19, 2018	0.321	Apr 19, 2018	0.315	Apr 19, 2018	0.472
Apr 22, 2018,	0.325	Apr 22, 2018	0.316	Apr 22, 2018	0.457
May 2, 2018,	0.298	May 2, 2018	0.384	May 2, 2018	0.453
May 7, 2018,	0.313	May 7, 2018	0.344	May 7, 2018	0.478
May 12, 2018	0.277	May 12, 2018	0.301	May 12, 2018	0.428
Jun 18, 2018,	0.144	Jun 18, 2018	0.164	Jun 18, 2018	0.269
Jun 23, 2018,	0.15	Jun 23, 2018	0.202	Jun 23, 2018	0.269
Jun 26, 2018,	0.136	Jun 26, 2018	0.162	Jun 26, 2018	0.268
Jun 28, 2018	0.134	Jun 28, 2018	0.147	Jun 28, 2018	0.27
Jul 23, 2018,	0.151	Jul 23, 2018	0.156	Jul 23, 2018	0.257
Jul 28, 2018	0.145	Jul 28, 2018	0.103	Jul 28, 2018	0.261

Aug 12, 2018	0.148	Aug 12, 2018	0.171	Aug 12, 2018	0.247
Sep 9, 2018	0.139	Sep 9, 2018	0.084	Sep 9, 2018	0.22
Sep 21, 2018	0.134	Sep 21, 2018	0.157	Sep 21, 2018	0.237
Oct 16, 2018	0.165	Oct 16, 2018	0.144	Oct 16, 2018	0.425
Nov 3, 2018	0.163	Nov 3, 2018	0.19	Nov 3, 2018	0.353
Mar 8, 2019	0.377	Mar 8, 2019	0.333	Mar 8, 2019	0.402
Mar 23, 2019	0.473	Mar 23, 2019	0.228	Mar 23, 2019	0.469
Apr 7, 2019	0.671	Apr 7, 2019	0.355	Apr 7, 2019	0.4
Apr 9, 2019	0.679	Apr 9, 2019	0.38	Apr 9, 2019	0.391
May 4, 2019	0.606	May 4, 2019	0.314	May 4, 2019	0.332
Jun 18, 2019	0.254	Jun 18, 2019	0.141	Jun 18, 2019	0.195
Jun 28, 2019	0.179	Jun 28, 2019	0.15	Jun 28, 2019	0.163
Jul 1, 2019	0.187	Jul 1, 2019	0.076	Jul 1, 2019	0.16
Jul 16, 2019	0.166	Jul 16, 2019	0.046	Jul 16, 2019	0.153
Sep 16, 2019	0.169	Sep 16, 2019	0.056	Sep 16, 2019	0.536
Nov 18, 2019	0.18	Nov 18, 2019	0.145	Nov 18, 2019	0.675
Jan 9, 2020	0.216	Jan 9, 2020	0.355	Jan 9, 2020	0.384
Apr 1, 2020	0.605	Apr 1, 2020	0.361	Apr 1, 2020	0.661
Apr 6, 2020,	0.566	Apr 6, 2020	0.345	Apr 6, 2020	0.63
Apr 16, 2020,	0.433	Apr 16, 2020	0.323	Apr 16, 2020	0.49
Apr 23, 2020,	0.343	Apr 23, 2020	0.383	Apr 23, 2020	0.468
Apr 28, 2020,	0.29	Apr 28, 2020	0.342	Apr 28, 2020	0.419
May 1, 2020,	0.286	May 1, 2020	0.39	May 1, 2020	0.293
May 18 2020	0.179	May 18, 2020	0.309	May 18, 2020	0.24
May 21 2020	0.201	May 21, 2020	0.319	May 21, 2020	0.234
Jun 7, 2020	0.156	Jun 7, 2020	0.283	Jun 7, 2020	0.308
Jun 15, 2020	0.156	Jun 15, 2020	0.233	Jun 15, 2020	0.327
Jun 17, 2020	0.138	Jun 17, 2020	0.268	Jun 17, 2020	0.347
Aug 24, 2020	0.147	Aug 24, 2020	-0.017	Aug 24, 2020	0.54
Aug 26, 2020	0.141	Aug 26, 2020	0.037	Aug 26, 2020	0.546
Sep 5, 2020,	0.141	Sep 5, 2020	0.026	Sep 5, 2020	0.609

Oct 8, 2020,	0.151	Oct 8, 2020	0.148	Oct 8, 2020	0.675
Nov 22, 2020	0.136	Nov 22, 2020	0.167	Nov 22, 2020	0.392
Dec 12, 2020	0.177	Dec 12, 2020	0.151	Dec 12, 2020	0.636
Feb 25, 2021	0.25	Feb 25, 2021	0.056	Feb 25, 2020	0.24
Apr 16, 2021	0.622	Apr 16, 2021	0.39	Apr 16, 2021	0.605
Apr 18, 2021	0.645	Apr 18, 2021	0.446	Apr 18, 2021	0.598
Apr 21, 2021	0.638	Apr 21, 2021	0.404	Apr 21, 2021	0.569
Apr 26, 2021,	0.613	Apr 26, 2021	0.418	Apr 26, 2021	0.492
Apr 28, 2021	0.542	Apr 28, 2021	0.343	Apr 28, 2021	0.421
May 1, 2021	0.435	May 1, 2021	0.276	May 1, 2021	0.358
May 3, 2021	0.532	May 3, 2021	0.378	May 3, 2021	0.394
May 6, 2021	0.321	May 6, 2021	0.224	May 6, 2021	0.274
May 8, 2021	0.481	May 8, 2021	0.305	May 8, 2021	0.385
May 11 2021	0.457	May 11, 2021	0.34	May 11, 2021	0.371
May 16, 2021	0.416	May 16, 2021	0.366	May 16, 2021	0.332
May 18, 2021	0.391	May 18, 2021	0.299	May 18, 202	0.321
May 21, 2021	0.252	May 21, 2021	0.179	May 21, 202	0.213
May 28, 2021	0.326	May 28, 2021	0.274	May 28, 2021	0.285
Jun 2, 2021	0.314	Jun 2, 2021	0.25	Jun 2, 2021	0.267
Jun 5, 2021	0.296	Jun 5, 2021	0.274	Jun 5, 2021	0.25
Jun 7, 2021	0.28	Jun 7, 2021	0.267	Jun 7, 2021	0.242
Jun 10, 2021	0.214	Jun 10, 2021	0.135	Jun 10, 202	0.192
Jun 12, 2021	0.274	Jun 12, 2021	0.238	Jun 12, 2021	0.253
Jun 15, 2021	0.258	Jun 15, 2021	0.2	Jun 15, 2021	0.232
Jun 17, 2021	0.245	Jun 17, 2021	0.215	Jun 17, 2021	0.246
Jun 20, 2021	0.264	Jun 20, 2021	0.187	Jun 20, 2021	0.237
Jun 22, 2021	0.249	Jun 22, 2021	0.179	Jun 22, 2021	0.231
Jun 25, 2021	0.247	Jun 25, 2021	0.199	Jun 25, 2021	0.213
Jun 30, 2021	0.262	Jun 30, 2021	0.176	Jun 30, 2021	0.229
Jul 2, 2021	0.25	Jul 2, 2021	0.213	Jul 2, 2021	0.238
Jul 5, 2021	0.238	Jul 5, 2021	0.174	Jul 5, 2021	0.219

Jul 7, 2021 0.233 Jul 7, 2021 0.172 Jul 10, 2021 0.212 Jul 10, 2021 0.253 Jul 10, 2021 0.189 Jul 10, 2021 0.229 Jul 12, 2021 0.24 Jul 12, 2021 0.158 Jul 12, 2021 0.23 Jul 15, 2021 0.228 Jul 15, 2021 0.165 Jul 17, 2021 0.218 Jul 20, 2021 0.232 Jul 17, 2021 0.165 Jul 17, 2021 0.235 Jul 20, 2021 0.224 Jul 20, 2021 0.099 Jul 20, 2021 0.249 Jul 27, 2021 0.224 Jul 27, 2021 0.099 Jul 27, 2021 0.254 Jul 27, 2021 0.221 Jul 30, 2021 0.139 Jul 27, 2021 0.254 Jul 30, 2021 0.221 Jul 30, 2021 0.169 Aug 6, 2021 0.269 Jul 30, 2021 0.198 Aug 6, 2021 0.169 Aug 6, 2021 0.244 Aug 9, 2021 0.186 Aug 99, 2021 0.065 Aug 9, 2021 0.342 Aug 11, 2021 0.183 Aug 11, 2021						
Jul 12, 2021 0.24 Jul 12, 2021 0.158 Jul 12, 2021 0.23 Jul 15, 2021 0.228 Jul 15, 2021 0.165 Jul 17, 2021 0.235 Jul 20, 2021 0.243 Jul 20, 2021 0.091 Jul 20, 2021 0.249 Jul 22, 2021 0.224 Jul 22, 2021 0.099 Jul 22, 2021 0.254 Jul 30, 2021 0.221 Jul 27, 2021 0.099 Jul 27, 2021 0.269 Jul 30, 2021 0.221 Jul 30, 2021 0.078 Jul 30, 2021 0.24 Aug 6, 2021 0.188 Aug 6, 2021 0.065 Aug 6, 2021 0.342 Aug 9, 2021 0.186 Aug 9, 2021 0.065 Aug 9, 2021 0.342 Aug 11, 2021 0.189 Aug 11, 2021 0.098 Aug 11, 2021 0.343 Aug 11, 2021 0.180 Aug 11, 2021 0.098 Aug 11, 2021 0.344 Aug 14, 2021 0.180 Aug 14, 2021 0.106 Aug 11, 2021 0.375 Aug 19, 2021 0.161 Aug 19, 2021	Jul 7, 2021	0.233	Jul 7, 2021	0.172	Jul 7, 2021	0.212
Jul 15, 2021 0.228 Jul 15, 2021 0.121 Jul 17, 2021 0.235 Jul 17, 2021 0.232 Jul 17, 2021 0.165 Jul 17, 2021 0.235 Jul 20, 2021 0.243 Jul 20, 2021 0.091 Jul 20, 2021 0.249 Jul 22, 2021 0.224 Jul 22, 2021 0.099 Jul 22, 2021 0.254 Jul 30, 2021 0.221 Jul 27, 2021 0.099 Jul 30, 2021 0.269 Jul 30, 2021 0.221 Jul 30, 2021 0.24 0.084 Jul 30, 2021 0.24 Aug 6, 2021 0.198 Aug 6, 2021 0.065 Aug 9, 2021 0.342 Aug 9, 2021 0.186 Aug 9, 2021 0.098 Aug 11, 2021 0.343 Aug 11, 2021 0.189 Aug 11, 2021 0.098 Aug 11, 2021 0.344 Aug 14, 2021 0.183 Aug 14, 2021 0.102 Aug 14, 2021 0.357 Aug 16, 2021 0.168 Aug 19, 2021 0.084 Aug 19, 2021 0.372 Aug 21, 2021 0.173	Jul 10, 2021	0.253	Jul 10, 2021	0.189	Jul 10, 2021	0.229
Jul 17, 2021 0.232 Jul 17, 2021 0.165 Jul 17, 2021 0.249 Jul 20, 2021 0.243 Jul 20, 2021 0.099 Jul 20, 2021 0.249 Jul 22, 2021 0.224 Jul 22, 2021 0.099 Jul 22, 2021 0.254 Jul 30, 2021 0.221 Jul 30, 2021 0.078 Jul 30, 2021 0.24 Aug 6, 2021 0.188 Aug 6, 2021 0.065 Aug 6, 2021 0.342 Aug 9, 2021 0.188 Aug 9, 2021 0.065 Aug 9, 2021 0.343 Aug 11, 2021 0.189 Aug 11, 2021 0.098 Aug 11, 2021 0.34 Aug 14, 2021 0.183 Aug 11, 2021 0.098 Aug 11, 2021 0.34 Aug 16, 2021 0.183 Aug 14, 2021 0.102 Aug 14, 2021 0.357 Aug 16, 2021 0.168 Aug 19, 2021 0.084 Aug 19, 2021 0.372 Aug 21, 2021 0.168 Aug 21, 2021 0.084 Aug 19, 2021 0.353 Aug 22, 2021 0.168 Aug 24, 2021	Jul 12, 2021	0.24	Jul 12, 2021	0.158	Jul 12, 2021	0.23
Jul 20, 2021 0.243 Jul 20, 2021 0.099 Jul 22, 2021 0.254 Jul 22, 2021 0.224 Jul 22, 2021 0.099 Jul 22, 2021 0.254 Jul 27, 2021 0.221 Jul 27, 2021 0.139 Jul 27, 2021 0.269 Jul 30, 2021 0.2 Jul 30, 2021 0.078 Jul 30, 2021 0.24 Aug 6, 2021 0.198 Aug 6, 2021 0.169 Aug 6, 2021 0.342 Aug 9, 2021 0.186 Aug 9, 2021 0.065 Aug 9, 2021 0.343 Aug 11, 2021 0.189 Aug 11, 2021 0.098 Aug 11, 2021 0.34 Aug 14, 2021 0.183 Aug 14, 2021 0.102 Aug 14, 2021 0.375 Aug 16, 2021 0.183 Aug 14, 2021 0.102 Aug 16, 2021 0.357 Aug 19, 2021 0.168 Aug 19, 2021 0.084 Aug 19, 2021 0.375 Aug 21, 2021 0.168 Aug 21, 2021 0.12 Aug 21, 2021 0.372 Aug 22, 2021 0.169 Aug 24, 2021	Jul 15, 2021	0.228	Jul 15, 2021	0.121	Jul 15, 2021	0.218
Jul 22, 2021 0.224 Jul 22, 2021 0.099 Jul 22, 2021 0.254 Jul 27, 2021 0.221 Jul 27, 2021 0.139 Jul 27, 2021 0.269 Jul 30, 2021 0.2 Jul 30, 2021 0.078 Jul 30, 2021 0.24 Aug 6, 2021 0.198 Aug 6, 2021 0.169 Aug 6, 2021 0.342 Aug 9, 2021 0.186 Aug 9, 2021 0.065 Aug 9, 2021 0.343 Aug 11, 2021 0.189 Aug 11, 2021 0.098 Aug 11, 2021 0.34 Aug 16, 2021 0.183 Aug 14, 2021 0.102 Aug 14, 2021 0.375 Aug 16, 2021 0.168 Aug 19, 2021 0.166 Aug 16, 2021 0.357 Aug 19, 2021 0.168 Aug 19, 2021 0.084 Aug 19, 2021 0.372 Aug 21, 2021 0.177 Aug 21, 2021 0.062 Aug 21, 2021 0.353 Aug 24, 2021 0.158 Aug 24, 2021 0.062 Aug 24, 2021 0.414 Aug 29, 2021 0.169 Aug 29, 2021	Jul 17, 2021	0.232	Jul 17, 2021	0.165	Jul 17, 2021	0.235
Jul 27, 2021 0.221 Jul 27, 2021 0.139 Jul 27, 2021 0.269 Jul 30, 2021 0.2 Jul 30, 2021 0.078 Jul 30, 2021 0.24 Aug 6, 2021 0.198 Aug 6, 2021 0.169 Aug 6, 2021 0.342 Aug 9, 2021 0.186 Aug 9, 2021 0.065 Aug 9, 2021 0.343 Aug 11, 2021 0.189 Aug 11, 2021 0.098 Aug 11, 2021 0.34 Aug 14, 2021 0.183 Aug 14, 2021 0.102 Aug 14, 2021 0.375 Aug 16, 2021 0.161 Aug 16, 2021 0.166 Aug 16, 2021 0.357 Aug 19, 2021 0.168 Aug 19, 2021 0.084 Aug 19, 2021 0.372 Aug 21, 2021 0.177 Aug 21, 2021 0.12 Aug 21, 2021 0.353 Aug 24, 2021 0.158 Aug 24, 2021 0.062 Aug 24, 2021 0.414 Aug 26, 2021 0.169 Aug 29, 2021 0.107 Aug 29, 2021 0.416 Aug 31, 2021 0.165 Sep 3, 2021	Jul 20, 2021	0.243	Jul 20, 2021	0.091	Jul 20, 2021	0.249
Jul 30, 2021 0.2 Jul 30, 2021 0.078 Jul 30, 2021 0.24 Aug 6, 2021 0.198 Aug 6, 2021 0.169 Aug 6, 2021 0.342 Aug 9, 2021 0.186 Aug 9, 2021 0.065 Aug 9, 2021 0.343 Aug 11, 2021 0.189 Aug 11, 2021 0.098 Aug 11, 2021 0.34 Aug 14, 2021 0.183 Aug 14, 2021 0.102 Aug 14, 2021 0.375 Aug 16, 2021 0.166 Aug 16, 2021 0.166 Aug 16, 2021 0.357 Aug 19, 2021 0.168 Aug 19, 2021 0.084 Aug 19, 2021 0.372 Aug 21, 2021 0.158 Aug 21, 2021 0.062 Aug 21, 2021 0.353 Aug 24, 2021 0.169 Aug 26, 2021 0.107 Aug 26, 2021 0.414 Aug 29, 2021 0.169 Aug 29, 2021 0.107 Aug 29, 2021 0.416 Aug 31, 2021 0.173 Aug 31, 2021 0.111 Aug 31, 2021 0.438 Sep 3, 2021, 0.165 Sep 3, 2021	Jul 22, 2021	0.224	Jul 22, 2021	0.099	Jul 22, 2021	0.254
Aug 6, 2021 0.198 Aug 6, 2021 0.169 Aug 6, 2021 0.342 Aug 9, 2021 0.186 Aug 9, 2021 0.065 Aug 9, 2021 0.343 Aug 11, 2021 0.189 Aug 11, 2021 0.098 Aug 11, 2021 0.34 Aug 14, 2021 0.183 Aug 14, 2021 0.102 Aug 14, 2021 0.375 Aug 16, 2021 0.171 Aug 16, 2021 0.166 Aug 16, 2021 0.357 Aug 19, 2021 0.168 Aug 19, 2021 0.084 Aug 19, 2021 0.372 Aug 21, 2021 0.158 Aug 21, 2021 0.062 Aug 21, 2021 0.353 Aug 24, 2021 0.169 Aug 26, 2021 0.107 Aug 26, 2021 0.414 Aug 29, 2021 0.169 Aug 29, 2021 0.099 Aug 29, 2021 0.416 Aug 31, 2021 0.173 Aug 31, 2021 0.111 Aug 31, 2021 0.438 Sep 3, 2021, 0.165 Sep 3, 2021 0.079 Sep 3, 2021 0.44 Sep 8, 2021, 0.168 Sep 10, 2021	Jul 27, 2021	0.221	Jul 27, 2021	0.139	Jul 27, 2021	0.269
Aug 9, 2021 0.186 Aug 9, 2021 0.065 Aug 9, 2021 0.343 Aug 11, 2021 0.189 Aug 11, 2021 0.098 Aug 11, 2021 0.34 Aug 14, 2021 0.183 Aug 14, 2021 0.102 Aug 14, 2021 0.357 Aug 16, 2021 0.171 Aug 16, 2021 0.166 Aug 16, 2021 0.357 Aug 19, 2021 0.168 Aug 19, 2021 0.084 Aug 19, 2021 0.372 Aug 21, 2021 0.177 Aug 21, 2021 0.062 Aug 21, 2021 0.353 Aug 24, 2021 0.169 Aug 24, 2021 0.062 Aug 24, 2021 0.414 Aug 29, 2021 0.169 Aug 26, 2021 0.107 Aug 26, 2021 0.416 Aug 31, 2021 0.169 Aug 31, 2021 0.107 Aug 26, 2021 0.416 Aug 31, 2021 0.165 Sep 3, 2021 0.099 Aug 29, 2021 0.183 Aug 31, 2021 0.165 Sep 3, 2021 0.079 Sep 3, 2021 0.44 Sep 8, 2021, 0.129 Sep 8, 2021	Jul 30, 2021	0.2	Jul 30, 2021	0.078	Jul 30, 2021	0.24
Aug 11, 2021 0.189 Aug 11, 2021 0.098 Aug 11, 2021 0.34 Aug 14, 2021 0.183 Aug 14, 2021 0.102 Aug 14, 2021 0.375 Aug 16, 2021 0.171 Aug 16, 2021 0.166 Aug 16, 2021 0.357 Aug 19, 2021 0.168 Aug 19, 2021 0.084 Aug 19, 2021 0.372 Aug 21, 2021 0.158 Aug 21, 2021 0.12 Aug 21, 2021 0.353 Aug 24, 2021 0.158 Aug 24, 2021 0.062 Aug 24, 2021 0.414 Aug 26, 2021 0.169 Aug 26, 2021 0.107 Aug 26, 2021 0.416 Aug 29, 2021 0.084 Aug 29, 2021 0.099 Aug 29, 2021 0.416 Aug 31, 2021 0.173 Aug 31, 2021 0.111 Aug 31, 2021 0.438 Sep 3, 2021, 0.165 Sep 3, 2021 0.079 Sep 3, 2021 0.44 Sep 8, 2021, 0.177 Sep 10, 2021 0.144 Sep 10, 2021 0.49 Sep 18, 2021 0.168 Sep 18, 2021	Aug 6, 2021	0.198	Aug 6, 2021	0.169	Aug 6, 2021	0.342
Aug 14, 2021 0.183 Aug 14, 2021 0.102 Aug 14, 2021 0.375 Aug 16, 2021 0.171 Aug 16, 2021 0.166 Aug 16, 2021 0.357 Aug 19, 2021 0.168 Aug 19, 2021 0.084 Aug 19, 2021 0.372 Aug 21, 2021 0.177 Aug 21, 2021 0.12 Aug 21, 2021 0.353 Aug 24, 2021 0.158 Aug 24, 2021 0.062 Aug 24, 2021 0.414 Aug 26, 2021 0.169 Aug 26, 2021 0.107 Aug 26, 2021 0.416 Aug 29, 2021 0.084 Aug 29, 2021 0.099 Aug 29, 2021 0.183 Aug 31, 2021 0.173 Aug 31, 2021 0.111 Aug 31, 2021 0.438 Sep 3, 2021, 0.165 Sep 8, 2021 0.079 Sep 3, 2021 0.44 Sep 8, 2021, 0.129 Sep 8, 2021 0.061 Sep 10, 2021 0.49 Sep 10, 2021 0.168 Sep 18, 2021 0.141 Sep 18, 2021 0.549 Sep 28, 2021 0.163 Sep 20, 2021	Aug 9, 2021	0.186	Aug 9, 2021	0.065	Aug 9, 2021	0.343
Aug 16, 2021 0.171 Aug 16, 2021 0.166 Aug 16, 2021 0.357 Aug 19, 2021 0.168 Aug 19, 2021 0.084 Aug 19, 2021 0.372 Aug 21, 2021 0.177 Aug 21, 2021 0.12 Aug 21, 2021 0.353 Aug 24, 2021 0.158 Aug 24, 2021 0.062 Aug 24, 2021 0.414 Aug 26, 2021 0.169 Aug 26, 2021 0.107 Aug 26, 2021 0.416 Aug 29, 2021 0.084 Aug 29, 2021 0.099 Aug 29, 2021 0.183 Aug 31, 2021 0.173 Aug 31, 2021 0.111 Aug 31, 2021 0.438 Sep 3, 2021, 0.165 Sep 3, 2021 0.079 Sep 3, 2021 0.44 Sep 8, 2021, 0.129 Sep 8, 2021 0.061 Sep 8, 2021 0.056 Sep 10, 2021 0.177 Sep 10, 2021 0.144 Sep 10, 2021 0.49 Sep 18, 2021 0.163 Sep 20, 2021 0.141 Sep 18, 2021 0.549 Sep 28, 2021 0.163 Sep 20, 2021	Aug 11, 2021	0.189	Aug 11, 2021	0.098	Aug 11, 2021	0.34
Aug 19, 20210.168Aug 19, 20210.084Aug 19, 20210.372Aug 21, 20210.177Aug 21, 20210.12Aug 21, 20210.353Aug 24, 20210.158Aug 24, 20210.062Aug 24, 20210.414Aug 26, 20210.169Aug 26, 20210.107Aug 26, 20210.416Aug 29, 20210.084Aug 29, 20210.099Aug 29, 20210.183Aug 31, 20210.173Aug 31, 20210.111Aug 31, 20210.438Sep 3, 2021,0.165Sep 3, 20210.079Sep 3, 20210.44Sep 8, 2021,0.129Sep 8, 20210.061Sep 8, 20210.056Sep 10, 20210.177Sep 10, 20210.144Sep 10, 20210.49Sep 18, 20210.168Sep 18, 20210.141Sep 18, 20210.548Sep 20, 20210.163Sep 20, 20210.09Sep 20, 20210.549Sep 30, 20210.171Sep 28, 20210.172Sep 28, 20210.576Sep 30, 20210.166Sep 30, 20210.186Sep 30, 20210.593Oct 3, 20210.165Oct 13, 20210.205Oct 13, 20210.668Oct 15, 2021,0.17Oct 15, 20210.251Oct 15, 20210.71	Aug 14, 2021	0.183	Aug 14, 2021	0.102	Aug 14, 2021	0.375
Aug 21, 20210.177Aug 21, 20210.12Aug 21, 20210.353Aug 24, 20210.158Aug 24, 20210.062Aug 24, 20210.414Aug 26, 20210.169Aug 26, 20210.107Aug 26, 20210.416Aug 29, 20210.084Aug 29, 20210.099Aug 29, 20210.183Aug 31, 20210.173Aug 31, 20210.111Aug 31, 20210.438Sep 3, 2021,0.165Sep 3, 20210.079Sep 3, 20210.44Sep 8, 2021,0.129Sep 8, 20210.061Sep 8, 20210.056Sep 10, 20210.177Sep 10, 20210.144Sep 10, 20210.49Sep 18, 20210.168Sep 18, 20210.141Sep 18, 20210.548Sep 20, 20210.163Sep 20, 20210.172Sep 28, 20210.549Sep 30, 20210.171Sep 28, 20210.172Sep 28, 20210.576Sep 30, 20210.166Sep 30, 20210.186Sep 30, 20210.577Oct 3, 20210.165Oct 13, 20210.208Oct 13, 20210.593Oct 13, 20210.165Oct 13, 20210.251Oct 15, 20210.71	Aug 16, 2021	0.171	Aug 16, 2021	0.166	Aug 16, 2021	0.357
Aug 24, 20210.158Aug 24, 20210.062Aug 24, 20210.414Aug 26, 20210.169Aug 26, 20210.107Aug 26, 20210.416Aug 29, 20210.084Aug 29, 20210.099Aug 29, 20210.183Aug 31, 20210.173Aug 31, 20210.111Aug 31, 20210.438Sep 3, 2021,0.165Sep 3, 20210.079Sep 3, 20210.44Sep 8, 2021,0.129Sep 8, 20210.061Sep 8, 20210.056Sep 10, 20210.177Sep 10, 20210.144Sep 10, 20210.49Sep 18, 20210.168Sep 18, 20210.141Sep 18, 20210.548Sep 20, 20210.163Sep 20, 20210.09Sep 20, 20210.549Sep 28, 20210.171Sep 28, 20210.172Sep 28, 20210.576Sep 30, 20210.166Sep 30, 20210.186Sep 30, 20210.577Oct 3, 20210.173Oct 3, 20210.205Oct 3, 20210.593Oct 13, 20210.165Oct 13, 20210.251Oct 15, 20210.71	Aug 19, 2021	0.168	Aug 19, 2021	0.084	Aug 19, 2021	0.372
Aug 26, 2021 0.169 Aug 26, 2021 0.107 Aug 26, 2021 0.416 Aug 29, 2021 0.084 Aug 29, 2021 0.099 Aug 29, 2021 0.183 Aug 31, 2021 0.173 Aug 31, 2021 0.111 Aug 31, 2021 0.438 Sep 3, 2021, 0.165 Sep 3, 2021 0.079 Sep 3, 2021 0.44 Sep 8, 2021, 0.129 Sep 8, 2021 0.061 Sep 8, 2021 0.056 Sep 10, 2021 0.177 Sep 10, 2021 0.144 Sep 10, 2021 0.49 Sep 18, 2021 0.168 Sep 18, 2021 0.141 Sep 18, 2021 0.548 Sep 20, 2021 0.163 Sep 20, 2021 0.09 Sep 20, 2021 0.549 Sep 30, 2021 0.171 Sep 28, 2021 0.172 Sep 28, 2021 0.576 Sep 30, 2021 0.166 Sep 30, 2021 0.186 Sep 30, 2021 0.577 Oct 3, 2021 0.165 Oct 13, 2021 0.205 Oct 13, 2021 0.668 Oct 15, 2021, 0.17 Oct 15, 2021 0.251 Oct 15, 2021 0.71	Aug 21, 2021	0.177	Aug 21, 2021	0.12	Aug 21, 2021	0.353
Aug 29, 20210.084Aug 29, 20210.099Aug 29, 20210.183Aug 31, 20210.173Aug 31, 20210.111Aug 31, 20210.438Sep 3, 2021,0.165Sep 3, 20210.079Sep 3, 20210.44Sep 8, 2021,0.129Sep 8, 20210.061Sep 8, 20210.056Sep 10, 20210.177Sep 10, 20210.144Sep 10, 20210.49Sep 18, 20210.168Sep 18, 20210.141Sep 18, 20210.548Sep 20, 20210.163Sep 20, 20210.09Sep 20, 20210.549Sep 28, 20210.171Sep 28, 20210.172Sep 28, 20210.576Sep 30, 20210.166Sep 30, 20210.186Sep 30, 20210.577Oct 3, 20210.165Oct 3, 20210.208Oct 3, 20210.593Oct 13, 20210.165Oct 13, 20210.205Oct 13, 20210.668Oct 15, 2021,0.17Oct 15, 20210.251Oct 15, 20210.71	Aug 24, 2021	0.158	Aug 24, 2021	0.062	Aug 24, 2021	0.414
Aug 31, 2021 0.173 Aug 31, 2021 0.111 Aug 31, 2021 0.438 Sep 3, 2021, 0.165 Sep 3, 2021 0.079 Sep 3, 2021 0.44 Sep 8, 2021, 0.129 Sep 8, 2021 0.061 Sep 8, 2021 0.056 Sep 10, 2021 0.177 Sep 10, 2021 0.144 Sep 10, 2021 0.49 Sep 18, 2021 0.168 Sep 18, 2021 0.141 Sep 18, 2021 0.548 Sep 20, 2021 0.163 Sep 20, 2021 0.09 Sep 20, 2021 0.549 Sep 28, 2021 0.171 Sep 28, 2021 0.172 Sep 28, 2021 0.576 Sep 30, 2021 0.166 Sep 30, 2021 0.186 Sep 30, 2021 0.577 Oct 3, 2021 0.173 Oct 3, 2021 0.208 Oct 3, 2021 0.593 Oct 13, 2021 0.165 Oct 13, 2021 0.205 Oct 13, 2021 0.668 Oct 15, 2021, 0.17 Oct 15, 2021 0.251 Oct 15, 2021 0.71	Aug 26, 2021	0.169	Aug 26, 2021	0.107	Aug 26, 2021	0.416
Sep 3, 2021, 0.165 Sep 3, 2021 0.079 Sep 3, 2021 0.44 Sep 8, 2021, 0.129 Sep 8, 2021 0.061 Sep 8, 2021 0.056 Sep 10, 2021 0.177 Sep 10, 2021 0.144 Sep 10, 2021 0.49 Sep 18, 2021 0.168 Sep 18, 2021 0.141 Sep 18, 2021 0.548 Sep 20, 2021 0.163 Sep 20, 2021 0.09 Sep 20, 2021 0.549 Sep 28, 2021 0.171 Sep 28, 2021 0.172 Sep 28, 2021 0.576 Sep 30, 2021 0.166 Sep 30, 2021 0.186 Sep 30, 2021 0.577 Oct 3, 2021 0.173 Oct 3, 2021 0.208 Oct 3, 2021 0.593 Oct 13, 2021 0.165 Oct 13, 2021 0.205 Oct 13, 2021 0.668 Oct 15, 2021, 0.17 Oct 15, 2021 0.251 Oct 15, 2021 0.71	Aug 29, 2021	0.084	Aug 29, 2021	0.099	Aug 29, 2021	0.183
Sep 8, 2021, 0.129 Sep 8, 2021 0.061 Sep 8, 2021 0.056 Sep 10, 2021 0.177 Sep 10, 2021 0.144 Sep 10, 2021 0.49 Sep 18, 2021 0.168 Sep 18, 2021 0.141 Sep 18, 2021 0.548 Sep 20, 2021 0.163 Sep 20, 2021 0.09 Sep 20, 2021 0.549 Sep 28, 2021 0.171 Sep 28, 2021 0.172 Sep 28, 2021 0.576 Sep 30, 2021 0.166 Sep 30, 2021 0.186 Sep 30, 2021 0.577 Oct 3, 2021 0.173 Oct 3, 2021 0.208 Oct 3, 2021 0.593 Oct 13, 2021 0.165 Oct 13, 2021 0.205 Oct 13, 2021 0.668 Oct 15, 2021, 0.17 Oct 15, 2021 0.251 Oct 15, 2021 0.71	Aug 31, 2021	0.173	Aug 31, 2021	0.111	Aug 31, 2021	0.438
Sep 10, 2021 0.177 Sep 10, 2021 0.144 Sep 10, 2021 0.49 Sep 18, 2021 0.168 Sep 18, 2021 0.141 Sep 18, 2021 0.548 Sep 20, 2021 0.163 Sep 20, 2021 0.09 Sep 20, 2021 0.549 Sep 28, 2021 0.171 Sep 28, 2021 0.172 Sep 28, 2021 0.576 Sep 30, 2021 0.166 Sep 30, 2021 0.186 Sep 30, 2021 0.577 Oct 3, 2021 0.173 Oct 3, 2021 0.208 Oct 3, 2021 0.593 Oct 13, 2021 0.165 Oct 13, 2021 0.205 Oct 13, 2021 0.668 Oct 15, 2021, 0.17 Oct 15, 2021 0.251 Oct 15, 2021 0.71	Sep 3, 2021,	0.165	Sep 3, 2021	0.079	Sep 3, 2021	0.44
Sep 18, 2021 0.168 Sep 18, 2021 0.141 Sep 18, 2021 0.548 Sep 20, 2021 0.163 Sep 20, 2021 0.09 Sep 20, 2021 0.549 Sep 28, 2021 0.171 Sep 28, 2021 0.172 Sep 28, 2021 0.576 Sep 30, 2021 0.166 Sep 30, 2021 0.186 Sep 30, 2021 0.577 Oct 3, 2021 0.173 Oct 3, 2021 0.208 Oct 3, 2021 0.593 Oct 13, 2021 0.165 Oct 13, 2021 0.205 Oct 13, 2021 0.668 Oct 15, 2021, 0.17 Oct 15, 2021 0.251 Oct 15, 2021 0.71	Sep 8, 2021,	0.129	Sep 8, 2021	0.061	Sep 8, 2021	0.056
Sep 20, 2021 0.163 Sep 20, 2021 0.09 Sep 20, 2021 0.549 Sep 28, 2021 0.171 Sep 28, 2021 0.172 Sep 28, 2021 0.576 Sep 30, 2021 0.166 Sep 30, 2021 0.186 Sep 30, 2021 0.577 Oct 3, 2021 0.173 Oct 3, 2021 0.208 Oct 3, 2021 0.593 Oct 13, 2021 0.165 Oct 13, 2021 0.205 Oct 13, 2021 0.668 Oct 15, 2021, 0.17 Oct 15, 2021 0.251 Oct 15, 2021 0.71	Sep 10, 2021	0.177	Sep 10, 2021	0.144	Sep 10, 2021	0.49
Sep 28, 2021 0.171 Sep 28, 2021 0.172 Sep 28, 2021 0.576 Sep 30, 2021 0.166 Sep 30, 2021 0.186 Sep 30, 2021 0.577 Oct 3, 2021 0.173 Oct 3, 2021 0.208 Oct 3, 2021 0.593 Oct 13, 2021 0.165 Oct 13, 2021 0.205 Oct 13, 2021 0.668 Oct 15, 2021, 0.17 Oct 15, 2021 0.251 Oct 15, 2021 0.71	Sep 18, 2021	0.168	Sep 18, 2021	0.141	Sep 18, 2021	0.548
Sep 30, 2021 0.166 Sep 30, 2021 0.186 Sep 30, 2021 0.577 Oct 3, 2021 0.173 Oct 3, 2021 0.208 Oct 3, 2021 0.593 Oct 13, 2021 0.165 Oct 13, 2021 0.205 Oct 13, 2021 0.668 Oct 15, 2021, 0.17 Oct 15, 2021 0.251 Oct 15, 2021 0.71	Sep 20, 2021	0.163	Sep 20, 2021	0.09	Sep 20, 2021	0.549
Oct 3, 2021 0.173 Oct 3, 2021 0.208 Oct 3, 2021 0.593 Oct 13, 2021 0.165 Oct 13, 2021 0.205 Oct 13, 2021 0.668 Oct 15, 2021, 0.17 Oct 15, 2021 0.251 Oct 15, 2021 0.71	Sep 28, 2021	0.171	Sep 28, 2021	0.172	Sep 28, 2021	0.576
Oct 13, 2021 0.165 Oct 13, 2021 0.205 Oct 13, 2021 0.668 Oct 15, 2021, 0.17 Oct 15, 2021 0.251 Oct 15, 2021 0.71	Sep 30, 2021	0.166	Sep 30, 2021	0.186	Sep 30, 2021	0.577
Oct 15, 2021, 0.17 Oct 15, 2021 0.251 Oct 15, 2021 0.71	Oct 3, 2021	0.173	Oct 3, 2021	0.208	Oct 3, 2021	0.593
	Oct 13, 2021	0.165	Oct 13, 2021	0.205	Oct 13, 2021	0.668
Oct 18, 2021, 0.171 Oct 18, 2021 0.207 Oct 18, 2021 0.722	Oct 15, 2021,	0.17	Oct 15, 2021	0.251	Oct 15, 2021	0.71
	Oct 18, 2021,	0.171	Oct 18, 2021	0.207	Oct 18, 2021	0.722

Oct 20, 2021, 0.154 Oct 20, 2021 0.15 Oct 20, 2021 0.15 Oct 20, 2021 0.513 Oct 23, 2021, 0.173 Oct 23, 2021 0.241 Oct 23, 2021 0.706 Oct 25, 2021, 0.169 Oct 25, 2021 0.259 Oct 25, 2021 0.708 Oct 30, 2021, 0.177 Oct 30, 2021 0.22 Oct 30, 2021 0.694 Nov 7, 2021, 0.167 Nov 7, 2021 0.132 Nov 7, 2021 0.322 Nov 22, 2021 0.167 Nov 22, 2021 0.185 Nov 22, 2021 0.597 Dec 12, 2021 0.158 Dec 12, 2021 0.185 Nov 22, 2021 0.597 Dec 12, 2021 0.158 Dec 12, 2021 0.185 Nov 22, 2021 0.597 Dec 12, 2021 0.158 Dec 12, 2021 0.185 Nov 22, 2021 0.597 Dec 12, 2021 0.158 Dec 12, 2021 0.183 Dec 12, 2021 0.623 Jan 1, 2022 0.136 Feb 5, 2022 0.149 Feb 5, 2022 0.311 Mar 2, 2022 0.116 Feb 20, 2022 0.114						
Oct 25, 2021, 0.169 Oct 25, 2021 0.259 Oct 25, 2021 0.694 Oct 30, 2021, 0.177 Oct 30, 2021 0.22 Oct 30, 2021 0.694 Nov 7, 2021, 0.131 Nov 7, 2021 0.132 Nov 7, 2021 0.322 Nov 22, 2021 0.167 Nov 22, 2021 0.185 Nov 22, 2021 0.597 Dec 12, 2021 0.158 Dec 12, 2021 0.193 Dec 12, 2021 0.623 Jan 1, 2022 0.158 Jan 3, 2022 0.198 Jan 3, 2022 0.749 Jan 3, 2022, 0.158 Jan 3, 2022 0.198 Jan 3, 2022 0.623 Feb 5, 2022 0.136 Feb 5, 2022 0.149 Feb 5, 2022 0.311 Feb 20, 2022 0.116 Mar 2, 2022 0.114 Feb 20, 2022 0.54 Mar 29, 2022 0.13 Mar 29, 2022 0.13 Mar 29, 2022 0.54 Mar 29, 2022 0.13 Mar 29, 2022 0.13 Mar 29, 2022 0.551 Apr 6, 2022 0.13 Apr 11, 2022	Oct 20, 2021,	0.154	Oct 20, 2021	0.15	Oct 20, 2021	0.513
Oct 30, 2021, 0.137 Oct 30, 2021 0.22 Oct 30, 2021 0.322 Nov 7, 2021, 0.131 Nov 7, 2021 0.132 Nov 7, 2021 0.322 Nov 22, 2021 0.167 Nov 22, 2021 0.185 Nov 22, 2021 0.597 Dec 12, 2021 0.158 Dec 12, 2021 0.193 Dec 12, 2021 0.623 Jan 1, 2022 0.158 Jan 3, 2022 0.198 Jan 3, 2022 0.749 Jan 3, 2022, 0.158 Jan 3, 2022 0.198 Jan 3, 2022 0.632 Feb 5, 2022 0.116 Feb 5, 2022 0.149 Feb 5, 2022 0.311 Feb 20, 2022 0.116 Feb 20, 2022 0.114 Feb 20, 2022 0.54 Mar 2, 2022 0.116 Mar 2, 2022 0.114 Mar 2, 2022 0.54 Mar 29, 2022 0.13 Mar 29, 2022 0.13 Mar 29, 2022 0.551 Apr 6, 2022 0.13 Apr 11, 2022 0.13 Apr 6, 2022 0.12 Apr 13, 2022 0.138 Apr 13, 2022 0.13	Oct 23, 2021,	0.173	Oct 23, 2021	0.241	Oct 23, 2021	0.706
Nov 7, 2021, 0.131 Nov 7, 2021 0.132 Nov 22, 2021 0.597 Nov 22, 2021 0.167 Nov 22, 2021 0.185 Nov 22, 2021 0.597 Dec 12, 2021 0.158 Dec 12, 2021 0.623 Jan 1, 2022 0.749 Jan 3, 2022, 0.158 Jan 3, 2022 0.198 Jan 3, 2022 0.632 Feb 5, 2022 0.158 Jan 3, 2022 0.198 Jan 3, 2022 0.632 Feb 5, 2022 0.136 Feb 5, 2022 0.149 Feb 5, 2022 0.311 Feb 20, 2022 0.116 Feb 20, 2022 0.114 Feb 20, 2022 0.54 Mar 2, 2022 0.13 Mar 2, 2022 0.13 Mar 2, 2022 0.54 Mar 29, 2022 0.13 Mar 29, 2022 0.13 Mar 29, 2022 0.551 Apr 6, 2022 0.13 Apr 11, 2022 0.13 Apr 6, 2022 0.12 Apr 11, 2022 0.13 Apr 13, 2022 0.144 Apr 13, 2022 0.287 Apr 18, 2022 0.13 Apr 18, 2022 0.13 <th>Oct 25, 2021,</th> <th>0.169</th> <th>Oct 25, 2021</th> <th>0.259</th> <th>Oct 25, 2021</th> <th>0.708</th>	Oct 25, 2021,	0.169	Oct 25, 2021	0.259	Oct 25, 2021	0.708
Nov 22, 2021 0.167 Nov 22, 2021 0.185 Nov 22, 2021 0.597 Dec 12, 2021 0.158 Dec 12, 2021 0.193 Dec 12, 2021 0.623 Jan 1, 2022 0.177 Jan 1, 2022 0.382 Jan 1, 2022 0.749 Jan 3, 2022, 0.158 Jan 3, 2022 0.198 Jan 3, 2022 0.632 Feb 5, 2022 0.116 Feb 5, 2022 0.149 Feb 5, 2022 0.311 Feb 20, 2022 0.116 Feb 20, 2022 0.114 Feb 20, 2022 0.54 Mar 29, 2022 0.116 Mar 29, 2022 0.111 Mar 29, 2022 0.54 Mar 29, 2022 0.13 Mar 29, 2022 0.13 Mar 29, 2022 0.54 Mar 29, 2022 0.13 Mar 29, 2022 0.13 Mar 29, 2022 0.551 Apr 6, 2022 0.13 Mar 29, 2022 0.14 Apr 6, 2022 0.12 Apr 11, 2022 0.143 Apr 11, 2022 0.149 Apr 13, 2022 0.287 Apr 18, 2022 0.143 Apr 18, 2022 0.	Oct 30, 2021,	0.177	Oct 30, 2021	0.22	Oct 30, 2021	0.694
Dec 12, 2021 0.158 Dec 12, 2021 0.193 Dec 12, 2021 0.623 Jan 1, 2022 0.177 Jan 1, 2022 0.382 Jan 1, 2022 0.749 Jan 3, 2022, 0.158 Jan 3, 2022 0.198 Jan 3, 2022 0.632 Feb 5, 2022 0.116 Feb 5, 2022 0.149 Feb 5, 2022 0.311 Feb 20, 2022 0.116 Feb 20, 2022 0.114 Feb 20, 2022 0.54 Mar 2, 2022 0.116 Mar 2, 2022 0.11 Mar 2, 2022 0.534 Mar 29, 2022 0.13 Mar 29, 2022 0.13 Mar 29, 2022 0.551 Apr 6, 2022 0.13 Mar 29, 2022 0.13 Mar 29, 2022 0.551 Apr 6, 2022 0.13 Apr 11, 2022 0.13 Apr 11, 2022 0.12 Apr 11, 2022 0.138 Apr 13, 2022 0.142 Apr 16, 2022 0.287 Apr 18, 2022 0.138 Apr 18, 2022 0.136 Apr 18, 2022 0.389 Apr 21, 2022 0.138 Apr 21, 2022 0.12	Nov 7, 2021,	0.131	Nov 7, 2021	0.132	Nov 7, 2021	0.322
Jan 1, 2022 0.177 Jan 1, 2022 0.382 Jan 3, 2022 0.632 Feb 5, 2022 0.158 Jan 3, 2022 0.198 Jan 3, 2022 0.632 Feb 5, 2022 0.136 Feb 5, 2022 0.149 Feb 5, 2022 0.311 Feb 20, 2022 0.116 Feb 20, 2022 0.114 Feb 20, 2022 0.54 Mar 2, 2022 0.116 Mar 2, 2022 0.11 Mar 2, 2022 0.534 Mar 29, 2022 0.13 Mar 29, 2022 0.13 Mar 29, 2022 0.551 Apr 6, 2022 0.122 Apr 6, 2022 0.1 Apr 6, 2022 0.12 Apr 11, 2022 0.138 Apr 11, 2022 0.13 Apr 11, 2022 0.449 Apr 13, 2022 0.143 Apr 13, 2022 0.142 Apr 13, 2022 0.287 Apr 16, 2022 0.138 Apr 16, 2022 0.134 Apr 16, 2022 0.389 Apr 18, 2022 0.138 Apr 18, 2022 0.136 Apr 18, 2022 0.399 Apr 21, 2022, 0.138 Apr 23, 2022 0.14 <th< th=""><th>Nov 22, 2021</th><th>0.167</th><th>Nov 22, 2021</th><th>0.185</th><th>Nov 22, 2021</th><th>0.597</th></th<>	Nov 22, 2021	0.167	Nov 22, 2021	0.185	Nov 22, 2021	0.597
Jan 3, 2022, 0.158 Jan 3, 2022 0.198 Jan 3, 2022 0.632 Feb 5, 2022 0.136 Feb 5, 2022 0.149 Feb 5, 2022 0.311 Feb 20, 2022 0.116 Feb 20, 2022 0.114 Feb 20, 2022 0.54 Mar 2, 2022 0.116 Mar 2, 2022 0.11 Mar 2, 2022 0.534 Mar 29, 2022 0.13 Mar 29, 2022 0.13 Mar 29, 2022 0.551 Apr 6, 2022 0.122 Apr 6, 2022 0.1 Apr 6, 2022 0.12 Apr 11, 2022 0.138 Apr 11, 2022 0.133 Apr 11, 2022 0.449 Apr 13, 2022 0.143 Apr 13, 2022 0.142 Apr 13, 2022 0.287 Apr 16, 2022 0.138 Apr 16, 2022 0.134 Apr 16, 2022 0.389 Apr 18, 2022 0.143 Apr 18, 2022 0.136 Apr 18, 2022 0.389 Apr 21, 2022 0.138 Apr 21, 2022 0.127 Apr 21, 2022 0.346 Apr 23, 2022 0.13 Apr 23, 2022 0	Dec 12, 2021	0.158	Dec 12, 2021	0.193	Dec 12, 2021	0.623
Feb 5, 2022 0.136 Feb 5, 2022 0.149 Feb 5, 2022 0.311 Feb 20, 2022 0.116 Feb 20, 2022 0.114 Feb 20, 2022 0.54 Mar 2, 2022 0.116 Mar 2, 2022 0.11 Mar 2, 2022 0.534 Mar 29, 2022 0.13 Mar 29, 2022 0.133 Mar 29, 2022 0.551 Apr 6, 2022 0.122 Apr 6, 2022 0.1 Apr 6, 2022 0.12 Apr 11, 2022 0.138 Apr 11, 2022 0.103 Apr 11, 2022 0.449 Apr 13, 2022 0.138 Apr 13, 2022 0.142 Apr 13, 2022 0.287 Apr 16, 2022 0.138 Apr 16, 2022 0.134 Apr 16, 2022 0.389 Apr 18, 2022 0.138 Apr 18, 2022 0.134 Apr 16, 2022 0.389 Apr 21, 2022, 0.138 Apr 21, 2022 0.127 Apr 21, 2022 0.346 Apr 23, 2022 0.138 Apr 23, 2022 0.14 Apr 23, 2022 0.399 Apr 26, 2022, 0.13 Apr 26, 2022 0.112 May 1, 2	Jan 1, 2022	0.177	Jan 1, 2022	0.382	Jan 1, 2022	0.749
Feb 20, 2022 0.116 Feb 20, 2022 0.114 Feb 20, 2022 0.54 Mar 2, 2022 0.116 Mar 2, 2022 0.11 Mar 2, 2022 0.534 Mar 29, 2022 0.13 Mar 29, 2022 0.133 Mar 29, 2022 0.551 Apr 6, 2022 0.122 Apr 6, 2022 0.1 Apr 6, 2022 0.12 Apr 11, 2022 0.138 Apr 11, 2022 0.103 Apr 11, 2022 0.449 Apr 13, 2022 0.143 Apr 13, 2022 0.142 Apr 13, 2022 0.287 Apr 16, 2022 0.138 Apr 16, 2022 0.134 Apr 16, 2022 0.389 Apr 18, 2022 0.143 Apr 18, 2022 0.134 Apr 16, 2022 0.389 Apr 18, 2022 0.138 Apr 18, 2022 0.136 Apr 18, 2022 0.389 Apr 21, 2022 0.138 Apr 21, 2022 0.14 Apr 21, 2022 0.346 Apr 23, 2022 0.135 Apr 23, 2022 0.14 Apr 23, 2022 0.307 May 1, 2022 0.13 May 1, 2022 <th< th=""><th>Jan 3, 2022,</th><th>0.158</th><th>Jan 3, 2022</th><th>0.198</th><th>Jan 3, 2022</th><th>0.632</th></th<>	Jan 3, 2022,	0.158	Jan 3, 2022	0.198	Jan 3, 2022	0.632
Mar 2, 2022 0.116 Mar 2, 2022 0.111 Mar 2, 2022 0.534 Mar 29, 2022 0.13 Mar 29, 2022 0.133 Mar 29, 2022 0.551 Apr 6, 2022 0.122 Apr 6, 2022 0.1 Apr 6, 2022 0.12 Apr 11, 2022 0.138 Apr 11, 2022 0.142 Apr 13, 2022 0.287 Apr 16, 2022 0.138 Apr 16, 2022 0.134 Apr 16, 2022 0.389 Apr 18, 2022 0.138 Apr 16, 2022 0.136 Apr 16, 2022 0.389 Apr 18, 2022 0.138 Apr 18, 2022 0.136 Apr 18, 2022 0.389 Apr 18, 2022 0.138 Apr 21, 2022 0.136 Apr 18, 2022 0.389 Apr 21, 2022 0.138 Apr 21, 2022 0.127 Apr 21, 2022 0.346 Apr 23, 2022 0.135 Apr 26, 2022 0.14 Apr 23, 2022 0.299 Apr 26, 2022 0.13 May 1, 2022 0.118 May 3, 2022 0.285 May 3, 2022 0.141 May 11, 2022 <	Feb 5, 2022	0.136	Feb 5, 2022	0.149	Feb 5, 2022	0.311
Mar 29, 2022 0.13 Mar 29, 2022 0.133 Mar 29, 2022 0.551 Apr 6, 2022 0.122 Apr 6, 2022 0.1 Apr 6, 2022 0.12 Apr 11, 2022 0.138 Apr 11, 2022 0.103 Apr 11, 2022 0.449 Apr 13, 2022 0.143 Apr 13, 2022 0.142 Apr 13, 2022 0.287 Apr 16, 2022 0.138 Apr 16, 2022 0.134 Apr 16, 2022 0.389 Apr 18, 2022 0.138 Apr 18, 2022 0.136 Apr 18, 2022 0.359 Apr 21, 2022, 0.138 Apr 21, 2022 0.127 Apr 21, 2022 0.346 Apr 23, 2022 0.135 Apr 23, 2022 0.14 Apr 23, 2022 0.346 Apr 26, 2022 0.13 Apr 26, 2022 0.125 Apr 26, 2022 0.307 May 1, 2022 3 May 1, 2022 0.112 May 1, 2022 0.277 May 3, 2022 0.128 May 3, 2022 0.118 May 3, 2022 0.289 May 11, 2022 0.141 May 11, 2022 0.1	Feb 20, 2022	0.116	Feb 20, 2022	0.114	Feb 20, 2022	0.54
Apr 6, 2022 0.122 Apr 6, 2022 0.1 Apr 6, 2022 0.12 Apr 11, 2022 0.138 Apr 11, 2022 0.103 Apr 11, 2022 0.449 Apr 13, 2022 0.143 Apr 13, 2022 0.142 Apr 13, 2022 0.287 Apr 16, 2022 0.138 Apr 16, 2022 0.134 Apr 16, 2022 0.389 Apr 18, 2022 0.143 Apr 18, 2022 0.136 Apr 18, 2022 0.359 Apr 21, 2022, 0.138 Apr 21, 2022 0.127 Apr 21, 2022 0.346 Apr 23, 2022 0.135 Apr 23, 2022 0.14 Apr 23, 2022 0.299 Apr 26, 2022 ,0.13 Apr 26, 2022 0.125 Apr 26, 2022 0.307 May 1, 2022 3 May 1, 2022 0.112 May 3, 2022 0.285 May 6, 2022 0.135 May 6, 2022 0.118 May 3, 2022 0.285 May 11, 2022 0.141 May 11, 2022 0.10 May 11, 2022 0.286 May 13, 2022 0.133 May 18, 2022 0.099	Mar 2, 2022	0.116	Mar 2, 2022	0.11	Mar 2, 2022	0.534
Apr 11, 20220.138Apr 11, 20220.103Apr 11, 20220.449Apr 13, 20220.143Apr 13, 20220.142Apr 13, 20220.287Apr 16, 20220.138Apr 16, 20220.134Apr 16, 20220.389Apr 18, 20220.143Apr 18, 20220.136Apr 18, 20220.359Apr 21, 2022, 0.138Apr 21, 20220.127Apr 21, 20220.346Apr 23, 20220.135Apr 23, 20220.14Apr 23, 20220.299Apr 26, 2022, 0.13Apr 26, 20220.125Apr 26, 20220.307May 1, 20223May 1, 20220.112May 1, 20220.277May 3, 20220.128May 3, 20220.118May 3, 20220.285May 6, 20220.135May 6, 20220.11May 6, 20220.289May 11, 20220.141May 11, 20220.1May 11, 20220.286May 13, 20220.149May 13, 20220.102May 13, 20220.292May 16, 20220.14May 16, 20220.099May 16, 20220.28May 18, 20220.142May 21, 20220.074May 21, 20220.253May 21, 20220.143May 23, 20220.081May 23, 20220.249	Mar 29, 2022	0.13	Mar 29, 2022	0.133	Mar 29, 2022	0.551
Apr 13, 20220.143Apr 13, 20220.142Apr 13, 20220.287Apr 16, 20220.138Apr 16, 20220.134Apr 16, 20220.389Apr 18, 20220.143Apr 18, 20220.136Apr 18, 20220.359Apr 21, 2022,0.138Apr 21, 20220.127Apr 21, 20220.346Apr 23, 20220.135Apr 23, 20220.14Apr 23, 20220.299Apr 26, 2022,0.13Apr 26, 20220.125Apr 26, 20220.307May 1, 20223May 1, 20220.112May 1, 20220.277May 3, 20220.128May 3, 20220.118May 3, 20220.285May 6, 20220.135May 6, 20220.11May 6, 20220.289May 11, 20220.141May 11, 20220.1May 11, 20220.286May 13, 20220.149May 13, 20220.102May 13, 20220.292May 16, 20220.14May 16, 20220.099May 16, 20220.285May 18, 20220.142May 18, 20220.074May 21, 20220.253May 21, 20220.143May 21, 20220.074May 21, 20220.249	Apr 6, 2022	0.122	Apr 6, 2022	0.1	Apr 6, 2022	0.12
Apr 16, 20220.138Apr 16, 20220.134Apr 16, 20220.389Apr 18, 20220.143Apr 18, 20220.136Apr 18, 20220.359Apr 21, 2022, 0.138Apr 21, 20220.127Apr 21, 20220.346Apr 23, 20220.135Apr 23, 20220.14Apr 23, 20220.299Apr 26, 2022, 0.13Apr 26, 20220.125Apr 26, 20220.307May 1, 20223May 1, 20220.112May 1, 20220.277May 3, 20220.128May 3, 20220.118May 3, 20220.285May 6, 20220.135May 6, 20220.11May 6, 20220.289May 11, 20220.141May 11, 20220.1May 11, 20220.286May 13, 20220.149May 13, 20220.102May 13, 20220.292May 16, 20220.14May 16, 20220.099May 16, 20220.28May 18, 20220.142May 21, 20220.074May 21, 20220.253May 23, 20220.143May 23, 20220.081May 23, 20220.249	Apr 11, 2022	0.138	Apr 11, 2022	0.103	Apr 11, 2022	0.449
Apr 18, 20220.143Apr 18, 20220.136Apr 18, 20220.359Apr 21, 2022,0.138Apr 21, 20220.127Apr 21, 20220.346Apr 23, 20220.135Apr 23, 20220.14Apr 23, 20220.299Apr 26, 2022,0.13Apr 26, 20220.125Apr 26, 20220.307May 1, 20223May 1, 20220.112May 1, 20220.277May 3, 20220.128May 3, 20220.118May 3, 20220.285May 6, 20220.135May 6, 20220.11May 6, 20220.289May 11, 20220.141May 11, 20220.1May 11, 20220.286May 13, 20220.139May 13, 20220.102May 13, 20220.292May 16, 20220.14May 16, 20220.099May 16, 20220.28May 18, 20220.133May 18, 20220.088May 18, 20220.265May 21, 20220.142May 21, 20220.074May 21, 20220.253May 23, 20220.143May 23, 20220.081May 23, 20220.249	Apr 13, 2022	0.143	Apr 13, 2022	0.142	Apr 13, 2022	0.287
Apr 21, 2022,0.138Apr 21, 20220.127Apr 21, 20220.346Apr 23, 20220.135Apr 23, 20220.14Apr 23, 20220.299Apr 26, 2022,0.13Apr 26, 20220.125Apr 26, 20220.307May 1, 2022,3May 1, 20220.112May 1, 20220.277May 3, 2022,0.128May 3, 20220.118May 3, 20220.285May 6, 2022,0.135May 6, 20220.11May 6, 20220.289May 11, 2022,0.141May 11, 20220.1May 11, 20220.286May 13, 2022,0.139May 13, 20220.102May 13, 20220.292May 16, 2022,0.14May 16, 20220.099May 16, 20220.28May 18, 2022,0.133May 18, 20220.088May 18, 20220.265May 21, 2022,0.142May 21, 20220.074May 21, 20220.253May 23, 2022,0.143May 23, 20220.081May 23, 20220.249	Apr 16, 2022	0.138	Apr 16, 2022	0.134	Apr 16, 2022	0.389
Apr 23, 20220.135Apr 23, 20220.14Apr 23, 20220.299Apr 26, 2022,0.13Apr 26, 20220.125Apr 26, 20220.307May 1, 20223May 1, 20220.112May 1, 20220.277May 3, 20220.128May 3, 20220.118May 3, 20220.285May 6, 20220.135May 6, 20220.11May 6, 20220.289May 11, 20220.141May 11, 20220.1May 11, 20220.286May 13, 20220.139May 13, 20220.102May 13, 20220.292May 16, 20220.14May 16, 20220.099May 16, 20220.28May 18, 20220.133May 18, 20220.088May 18, 20220.265May 21, 20220.142May 21, 20220.074May 21, 20220.253May 23, 20220.143May 23, 20220.081May 23, 20220.249	Apr 18, 2022	0.143	Apr 18, 2022	0.136	Apr 18, 2022	0.359
Apr 26, 2022,0.13Apr 26, 20220.125Apr 26, 20220.307May 1, 20223May 1, 20220.112May 1, 20220.277May 3, 20220.128May 3, 20220.118May 3, 20220.285May 6, 20220.135May 6, 20220.11May 6, 20220.289May 11, 20220.141May 11, 20220.1May 11, 20220.286May 13, 20220.139May 13, 20220.102May 13, 20220.292May 16, 20220.14May 16, 20220.099May 16, 20220.28May 18, 20220.133May 18, 20220.088May 18, 20220.265May 21, 20220.142May 21, 20220.074May 21, 20220.253May 23, 20220.143May 23, 20220.081May 23, 20220.249	Apr 21, 2022,	0.138	Apr 21, 2022	0.127	Apr 21, 2022	0.346
May 1, 20223May 1, 20220.112May 1, 20220.277May 3, 20220.128May 3, 20220.118May 3, 20220.285May 6, 20220.135May 6, 20220.11May 6, 20220.289May 11, 20220.141May 11, 20220.1May 11, 20220.286May 13, 20220.139May 13, 20220.102May 13, 20220.292May 16, 20220.14May 16, 20220.099May 16, 20220.28May 18, 20220.133May 18, 20220.088May 18, 20220.265May 21, 20220.142May 21, 20220.074May 21, 20220.253May 23, 20220.143May 23, 20220.081May 23, 20220.249	Apr 23, 2022	0.135	Apr 23, 2022	0.14	Apr 23, 2022	0.299
May 3, 20220.128May 3, 20220.118May 3, 20220.285May 6, 20220.135May 6, 20220.11May 6, 20220.289May 11, 20220.141May 11, 20220.1May 11, 20220.286May 13, 20220.139May 13, 20220.102May 13, 20220.292May 16, 20220.14May 16, 20220.099May 16, 20220.28May 18, 20220.133May 18, 20220.088May 18, 20220.265May 21, 20220.142May 21, 20220.074May 21, 20220.253May 23, 20220.143May 23, 20220.081May 23, 20220.249	Apr 26, 2022	,0.13	Apr 26, 2022	0.125	Apr 26, 2022	0.307
May 6, 20220.135May 6, 20220.11May 6, 20220.289May 11, 20220.141May 11, 20220.1May 11, 20220.286May 13, 20220.139May 13, 20220.102May 13, 20220.292May 16, 20220.14May 16, 20220.099May 16, 20220.28May 18, 20220.133May 18, 20220.088May 18, 20220.265May 21, 20220.142May 21, 20220.074May 21, 20220.253May 23, 20220.143May 23, 20220.081May 23, 20220.249	May 1, 2022	3	May 1, 2022	0.112	May 1, 2022	0.277
May 11, 2022 0.141 May 11, 2022 0.1 May 11, 2022 0.286 May 13, 2022 0.139 May 13, 2022 0.102 May 13, 2022 0.292 May 16, 2022 0.14 May 16, 2022 0.099 May 16, 2022 0.28 May 18, 2022 0.133 May 18, 2022 0.088 May 18, 2022 0.265 May 21, 2022 0.142 May 21, 2022 0.074 May 21, 2022 0.253 May 23, 2022 0.143 May 23, 2022 0.081 May 23, 2022 0.249	May 3, 2022	0.128	May 3, 2022	0.118	May 3, 2022	0.285
May 13, 20220.139May 13, 20220.102May 13, 20220.292May 16, 20220.14May 16, 20220.099May 16, 20220.28May 18, 20220.133May 18, 20220.088May 18, 20220.265May 21, 20220.142May 21, 20220.074May 21, 20220.253May 23, 20220.143May 23, 20220.081May 23, 20220.249	May 6, 2022	0.135	May 6, 2022	0.11	May 6, 2022	0.289
May 16, 20220.14May 16, 20220.099May 16, 20220.28May 18, 20220.133May 18, 20220.088May 18, 20220.265May 21, 20220.142May 21, 20220.074May 21, 20220.253May 23, 20220.143May 23, 20220.081May 23, 20220.249	May 11, 2022	0.141	May 11, 2022	0.1	May 11, 2022	0.286
May 18, 2022 0.133 May 18, 2022 0.088 May 18, 2022 0.265 May 21, 2022 0.142 May 21, 2022 0.074 May 21, 2022 0.253 May 23, 2022 0.143 May 23, 2022 0.081 May 23, 2022 0.249	May 13, 2022	0.139	May 13, 2022	0.102	May 13, 2022	0.292
May 21, 2022 0.142 May 21, 2022 0.074 May 21, 2022 0.253 May 23, 2022 0.143 May 23, 2022 0.081 May 23, 2022 0.249	May 16, 2022	0.14	May 16, 2022	0.099	May 16, 2022	0.28
<i>May</i> 23, 2022 0.143 May 23, 2022 0.081 May 23, 2022 0.249	May 18, 2022	0.133	May 18, 2022	0.088	May 18, 2022	0.265
	May 21, 2022	0.142	May 21, 2022	0.074	May 21, 2022	0.253
<i>May 26, 2022</i> 0.145 May 26, 2022 0.062 May 26, 2022 0.128	May 23, 2022	0.143	May 23, 2022	0.081	May 23, 2022	0.249
	May 26, 2022	0.145	May 26, 2022	0.062	May 26, 2022	0.128

May 28, 2022 0.089 May 28, 2022 0.075 May 31, 2022 0.25 May 31, 2022 0.135 May 31, 2022 0.07 May 31, 2022 0.205 Jun 2, 2022, 0.124 Jun 2, 2022 0.069 Jun 2, 2022 0.23 Jun 10, 2022, 0.123 Jun 7, 2022 0.053 Jun 10, 2022 0.228 Jun 10, 2022, 0.073 Jun 12, 2022 0.043 Jun 12, 2022 0.198 Jun 15, 2022, 0.138 Jun 15, 2022 0.047 Jun 15, 2022 0.198 Jun 17, 2022, 0.133 Jun 17, 2022 0.036 Jun 17, 2022 0.198 Jun 20, 2022, 0.135 Jun 20, 2022 0.027 Jun 20, 2022 0.19 Jun 20, 2022, 0.123 Jun 22, 2022 0.029 Jun 20, 2022 0.19 Jun 20, 2022, 0.124 Jun 22, 2022 0.029 Jun 22, 2022 0.17 Jun 27, 2022, 0.124 Jun 27, 2022 0.036 Jun 27, 2022 0.172 Jun 27, 2022, 0.124 Jun 2, 2022<						
Jun 2, 2022, 0.124 Jun 2, 2022 0.069 Jun 2, 2022 0.228 Jun 7, 2022, 0.123 Jun 7, 2022 0.053 Jun 7, 2022 0.228 Jun 10, 2022, 0.14 Jun 10, 2022 0.053 Jun 10, 2022 0.1 Jun 12, 2022, 0.073 Jun 15, 2022 0.043 Jun 15, 2022 0.198 Jun 15, 2022, 0.138 Jun 15, 2022 0.047 Jun 15, 2022 0.188 Jun 17, 2022, 0.133 Jun 17, 2022 0.036 Jun 17, 2022 0.19 Jun 20, 2022, 0.135 Jun 20, 2022 0.027 Jun 20, 2022 0.171 Jun 27, 2022, 0.133 Jun 25, 2022 0.029 Jun 22, 2022 0.172 Jun 27, 2022, 0.124 Jun 27, 2022 0.029 Jun 27, 2022 0.172 Jun 27, 2022, 0.124 Jun 27, 2022 0.036 Jun 27, 2022 0.172 Jun 27, 2022, 0.122 Jun 30, 2022 0.172 Jun 27, 2022 0.172 Jul 2, 2022, 0.122 Jun 27, 202	May 28, 2022	0.089	May 28, 2022	0.075	May 28, 2022	0.226
Jun 7, 2022, 0.123 Jun 7, 2022 0.053 Jun 7, 2022 0.228 Jun 10, 2022, 0.14 Jun 10, 2022 0.053 Jun 10, 2022 0.1 Jun 12, 2022, 0.073 Jun 12, 2022 0.043 Jun 15, 2022 0.198 Jun 15, 2022, 0.138 Jun 15, 2022 0.047 Jun 15, 2022 0.188 Jun 17, 2022, 0.133 Jun 17, 2022 0.036 Jun 17, 2022 0.19 Jun 20, 2022, 0.135 Jun 20, 2022 0.027 Jun 20, 2022 0.171 Jun 25, 2022, 0.133 Jun 25, 2022 0.029 Jun 22, 2022 0.172 Jun 27, 2022, 0.133 Jun 27, 2022 0.037 Jun 25, 2022 0.172 Jun 27, 2022, 0.124 Jun 27, 2022 0.028 Jun 27, 2022 0.172 Jun 30, 2022, 0.122 Jun 30, 2022 0.036 Jun 30, 2022 0.172 Jul 2, 2022, 0.12 Jul 2, 2022 0.036 Jul 3, 2022 0.169 Jul 10, 2022, 0.119 Jul 10, 202	May 31, 2022	0.135	May 31, 2022	0.07	May 31, 2022	0.205
Jun 10, 2022, 0.14 Jun 10, 2022 0.053 Jun 10, 2022 0.198 Jun 12, 2022, 0.073 Jun 15, 2022 0.047 Jun 15, 2022 0.188 Jun 17, 2022, 0.138 Jun 17, 2022 0.036 Jun 17, 2022 0.19 Jun 20, 2022, 0.135 Jun 20, 2022 0.027 Jun 20, 2022 0.171 Jun 25, 2022, 0.133 Jun 25, 2022 0.029 Jun 22, 2022 0.18 Jun 27, 2022, 0.133 Jun 25, 2022 0.029 Jun 22, 2022 0.172 Jun 27, 2022, 0.133 Jun 27, 2022 0.029 Jun 25, 2022 0.172 Jun 27, 2022, 0.124 Jun 27, 2022 0.028 Jun 27, 2022 0.172 Jun 30, 2022, 0.122 Jun 30, 2022 0.036 Jun 30, 2022 0.172 Jul 2, 2022, 0.12 Jul 2, 2022 0.039 Jul 2, 2022 0.019 Jul 2, 2022 0.169 Jul 10, 2022, 0.119 Jul 10, 2022 0.035 Jul 11, 2022 0.162 Jul 17, 2	Jun 2, 2022,	0.124	Jun 2, 2022	0.069	Jun 2, 2022	0.213
Jun 12, 2022, 0.073 Jun 12, 2022 0.043 Jun 15, 2022 0.188 Jun 15, 2022, 0.138 Jun 15, 2022 0.047 Jun 15, 2022 0.188 Jun 17, 2022, 0.133 Jun 17, 2022 0.036 Jun 17, 2022 0.19 Jun 20, 2022, 0.135 Jun 20, 2022 0.027 Jun 20, 2022 0.171 Jun 25, 2022, 0.12 Jun 22, 2022 0.029 Jun 22, 2022 0.18 Jun 27, 2022, 0.124 Jun 25, 2022 0.037 Jun 25, 2022 0.172 Jun 30, 2022, 0.124 Jun 30, 2022 0.036 Jun 30, 2022 0.172 Jun 30, 2022, 0.122 Jun 30, 2022 0.036 Jun 30, 2022 0.172 Jun 2, 2022, 0.12 Jul 2, 2022 0.036 Jul 3, 2022 0.169 Jul 7, 2022, 0.119 Jul 17, 2022 0.036 Jul 10, 2022 0.162 Jul 10, 2022, 0.119 Jul 17, 2022 0.046 Jul 10, 2022 0.162 Jul 17, 2022, 0.119 Jul 17,	Jun 7, 2022,	0.123	Jun 7, 2022	0.053	Jun 7, 2022	0.228
Jun 15, 2022, 0.138 Jun 17, 2022 0.047 Jun 15, 2022 0.188 Jun 17, 2022, 0.133 Jun 17, 2022 0.036 Jun 17, 2022 0.19 Jun 20, 2022, 0.135 Jun 20, 2022 0.027 Jun 20, 2022 0.171 Jun 25, 2022, 0.12 Jun 22, 2022 0.029 Jun 22, 2022 0.18 Jun 25, 2022, 0.133 Jun 25, 2022 0.037 Jun 25, 2022 0.172 Jun 30, 2022, 0.124 Jun 27, 2022 0.028 Jun 27, 2022 0.172 Jun 30, 2022, 0.122 Jun 30, 2022 0.036 Jun 30, 2022 0.172 Jul 2, 2022, 0.12 Jul 2, 2022 0.036 Jul 2, 2022 0.109 Jul 7, 2022, 0.119 Jul 17, 2022 0.036 Jul 17, 2022 0.162 Jul 10, 2022, 0.119 Jul 10, 2022 0.046 Jul 10, 2022 0.162 Jul 11, 2022, 0.119 Jul 11, 2022 0.035 Jul 17, 2022 0.151 Jul 20, 2022, 0.115 Jul 17,	Jun 10, 2022,	0.14	Jun 10, 2022	0.053	Jun 10, 2022	0.1
Jun 17, 2022, 0.133 Jun 20, 2022 0.036 Jun 17, 2022 0.17 Jun 20, 2022, 0.135 Jun 20, 2022 0.027 Jun 20, 2022 0.171 Jun 22, 2022 0.12 Jun 22, 2022 0.029 Jun 22, 2022 0.18 Jun 25, 2022, 0.133 Jun 25, 2022 0.037 Jun 25, 2022 0.172 Jun 30, 2022, 0.124 Jun 27, 2022 0.036 Jun 30, 2022 0.172 Jul 30, 2022, 0.122 Jun 30, 2022 0.036 Jun 30, 2022 0.172 Jul 2, 2022, 0.12 Jul 2, 2022 0.036 Jul 30, 2022 0.109 Jul 5, 2022, 0.19 Jul 7, 2022 0.036 Jul 3, 2022 0.169 Jul 7, 2022, 0.119 Jul 10, 2022 0.046 Jul 10, 2022 0.162 Jul 11, 2022, 0.119 Jul 10, 2022 0.046 Jul 11, 2022 0.162 Jul 27, 2022, 0.115 Jul 17, 2022 0.035 Jul 11, 2022 0.169 Jul 20, 2022, 0.115 Jul 20, 2022	Jun 12, 2022,	0.073	Jun 12, 2022	0.043	Jun 12, 2022	0.198
Jun 20, 2022, 0.135 Jun 20, 2022 0.027 Jun 20, 2022 0.171 Jun 22, 2022 0.12 Jun 22, 2022 0.029 Jun 22, 2022 0.18 Jun 25, 2022, 0.133 Jun 25, 2022 0.037 Jun 25, 2022 0.172 Jun 30, 2022, 0.124 Jun 27, 2022 0.036 Jun 30, 2022 0.172 Jul 30, 2022, 0.12 Jul 2, 2022 0.079 Jul 2, 2022 0.109 Jul 5, 2022, 0.093 Jul 5, 2022 0.036 Jul 5, 2022 0.169 Jul 7, 2022, 0.119 Jul 7, 2022 0.012 Jul 7, 2022 0.162 Jul 10, 2022, 0.119 Jul 10, 2022 0.046 Jul 10, 2022 0.162 Jul 11, 2022, 0.119 Jul 10, 2022 0.046 Jul 11, 2022 0.151 Jul 17, 2022, 0.114 Jul 12, 2022 0.055 Jul 17, 2022 0.159 Jul 20, 2022, 0.115 Jul 20, 2022 0.05 Jul 20, 2022 0.156 Jul 22, 2022, 0.11 Jul 25, 2022 </th <th>Jun 15, 2022,</th> <th>0.138</th> <th>Jun 15, 2022</th> <th>0.047</th> <th>Jun 15, 2022</th> <th>0.188</th>	Jun 15, 2022,	0.138	Jun 15, 2022	0.047	Jun 15, 2022	0.188
Jun 22, 2022 0.12 Jun 25, 2022 0.029 Jun 25, 2022 0.172 Jun 25, 2022, 20.133 Jun 25, 2022 0.037 Jun 25, 2022 0.172 Jun 27, 2022, 20.124 Jun 27, 2022 0.028 Jun 27, 2022 0.172 Jul 30, 2022, 30.122 Jun 30, 2022 0.036 Jun 30, 2022 0.172 Jul 2, 2022, 30.12 Jul 2, 2022 0.079 Jul 2, 2022 0.109 Jul 5, 2022, 30.13 Jul 5, 2022 0.036 Jul 5, 2022 0.169 Jul 7, 2022, 30.19 Jul 7, 2022 0.036 Jul 7, 2022 0.169 Jul 10, 2022, 30.19 Jul 10, 2022 0.046 Jul 10, 2022 0.162 Jul 11, 2022, 30.19 Jul 12, 2022 0.046 Jul 10, 2022 0.151 Jul 17, 2022, 30.19 Jul 17, 2022 0.035 Jul 17, 2022 0.151 Jul 17, 2022, 30.19 Jul 20, 2022 0.007 Jul 17, 2022 0.159 Jul 20, 2022, 30.19 Jul 20, 2022 0.009 Jul 20, 2022 0.156 Jul 25, 2022, 30.19 Jul 25, 2022 0.0	Jun 17, 2022,	0.133	Jun 17, 2022	0.036	Jun 17, 2022	0.19
Jun 25, 2022, 0.133 Jun 25, 2022 0.037 Jun 25, 2022 0.172 Jun 27, 2022, 0.124 Jun 27, 2022 0.028 Jun 27, 2022 0.172 Jun 30, 2022, 0.122 Jun 30, 2022 0.036 Jun 30, 2022 0.172 Jul 2, 2022, 0.12 Jul 2, 2022 0.079 Jul 2, 2022 0.109 Jul 5, 2022, 0.093 Jul 5, 2022 0.036 Jul 5, 2022 0.169 Jul 7, 2022, 0.119 Jul 7, 2022 0.012 Jul 7, 2022 0.162 Jul 10, 2022, 0.119 Jul 10, 2022 0.046 Jul 10, 2022 0.162 Jul 11, 2022, 0.104 Jul 12, 2022 0.035 Jul 10, 2022 0.143 Jul 17, 2022, 0.115 Jul 17, 2022 0.007 Jul 17, 2022 0.169 Jul 20, 2022, 0.112 Jul 20, 2022 0.005 Jul 20, 2022 0.156 Jul 22, 2022, 0.112 Jul 25, 2022 0.009 Jul 27, 2022 0.172 Jul 27, 2022, 0.111 Jul 25, 20	Jun 20, 2022,	0.135	Jun 20, 2022	0.027	Jun 20, 2022	0.171
Jun 27, 2022, 0.124 Jun 27, 2022 0.028 Jun 27, 2022 0.172 Jun 30, 2022, 0.122 Jun 30, 2022 0.036 Jun 30, 2022 0.172 Jul 2, 2022, 0.12 Jul 2, 2022 0.079 Jul 2, 2022 0.109 Jul 5, 2022, 0.093 Jul 5, 2022 0.036 Jul 5, 2022 0.169 Jul 7, 2022, 0.119 Jul 10, 2022 0.012 Jul 7, 2022 0.162 Jul 10, 2022, 0.119 Jul 10, 2022 0.046 Jul 10, 2022 0.143 Jul 12, 2022, 0.104 Jul 12, 2022 0.035 Jul 12, 2022 0.151 Jul 17, 2022, 0.115 Jul 17, 2022 0.007 Jul 17, 2022 0.169 Jul 20, 2022, 0.112 Jul 20, 2022 0.05 Jul 20, 2022 0.156 Jul 22, 2022, 0.098 Jul 22, 2022 0.009 Jul 22, 2022 0.172 Jul 27, 2022, 0.111 Jul 25, 2022 0.011 Jul 25, 2022 0.191 Jul 30, 2022, 0.114 Jul 30, 20	Jun 22, 2022	0.12	Jun 22, 2022	0.029	Jun 22, 2022	0.18
Jun 30, 2022, 0.122 Jun 30, 2022 0.036 Jun 30, 2022 0.172 Jul 2, 2022, 0.12 Jul 2, 2022 0.079 Jul 2, 2022 0.109 Jul 5, 2022, 0.093 Jul 5, 2022 0.036 Jul 5, 2022 0.169 Jul 7, 2022, 0.119 Jul 7, 2022 0.012 Jul 7, 2022 0.162 Jul 10, 2022, 0.119 Jul 10, 2022 0.046 Jul 10, 2022 0.143 Jul 12, 2022, 0.104 Jul 12, 2022 0.035 Jul 12, 2022 0.151 Jul 17, 2022, 0.115 Jul 17, 2022 0.007 Jul 17, 2022 0.169 Jul 20, 2022, 0.112 Jul 20, 2022 0.05 Jul 20, 2022 0.156 Jul 22, 2022, 0.098 Jul 22, 2022 0.009 Jul 22, 2022 0.172 Jul 25, 2022, 0.111 Jul 25, 2022 0.011 Jul 25, 2022 0.111 Jul 27, 2022, 0.105 Jul 27, 2022 0.008 Jul 27, 2022 0.218 Aug 1, 2022, 0.11 Aug 1, 2022 </th <th>Jun 25, 2022,</th> <th>0.133</th> <th>Jun 25, 2022</th> <th>0.037</th> <th>Jun 25, 2022</th> <th>0.172</th>	Jun 25, 2022,	0.133	Jun 25, 2022	0.037	Jun 25, 2022	0.172
Jul 2, 2022, 0.12 Jul 2, 2022 0.079 Jul 2, 2022 0.109 Jul 5, 2022, 0.093 Jul 5, 2022 0.036 Jul 5, 2022 0.169 Jul 7, 2022, 0.119 Jul 7, 2022 0.012 Jul 7, 2022 0.162 Jul 10, 2022, 0.119 Jul 10, 2022 0.046 Jul 10, 2022 0.143 Jul 12, 2022, 0.104 Jul 12, 2022 0.035 Jul 12, 2022 0.151 Jul 17, 2022, 0.115 Jul 17, 2022 0.007 Jul 17, 2022 0.169 Jul 20, 2022, 0.112 Jul 20, 2022 0.05 Jul 20, 2022 0.156 Jul 22, 2022, 0.098 Jul 22, 2022 0.005 Jul 22, 2022 0.172 Jul 25, 2022, 0.111 Jul 25, 2022 0.009 Jul 25, 2022 0.172 Jul 27, 2022, 0.105 Jul 27, 2022 0.008 Jul 27, 2022 0.255 Jul 30, 2022, 0.114 Jul 30, 2022 0.006 Jul 30, 2022 0.218 Aug 1, 2022, 0.11 Aug 1, 2022 </th <th>Jun 27, 2022,</th> <th>0.124</th> <th>Jun 27, 2022</th> <th>0.028</th> <th>Jun 27, 2022</th> <th>0.172</th>	Jun 27, 2022,	0.124	Jun 27, 2022	0.028	Jun 27, 2022	0.172
Jul 5, 2022, 0.093 Jul 5, 2022 0.036 Jul 5, 2022 0.169 Jul 7, 2022, 0.119 Jul 7, 2022 0.012 Jul 7, 2022 0.162 Jul 10, 2022, 0.119 Jul 10, 2022 0.046 Jul 10, 2022 0.143 Jul 12, 2022, 0.104 Jul 12, 2022 0.035 Jul 12, 2022 0.151 Jul 17, 2022, 0.115 Jul 17, 2022 0.007 Jul 17, 2022 0.169 Jul 20, 2022, 0.112 Jul 20, 2022 0.05 Jul 20, 2022 0.156 Jul 22, 2022, 0.098 Jul 22, 2022 0.009 Jul 22, 2022 0.172 Jul 25, 2022, 0.111 Jul 25, 2022 0.001 Jul 25, 2022 0.191 Jul 30, 2022, 0.111 Jul 27, 2022 0.008 Jul 27, 2022 0.191 Jul 30, 2022, 0.114 Jul 30, 2022 0.008 Jul 30, 2022 0.218 Aug 1, 2022, 0.11 Aug 1, 2022 0.008 Aug 1, 2022 0.236 Aug 4, 2022, 0.11 Aug 4, 2022 </th <th>Jun 30, 2022,</th> <th>0.122</th> <th>Jun 30, 2022</th> <th>0.036</th> <th>Jun 30, 2022</th> <th>0.172</th>	Jun 30, 2022,	0.122	Jun 30, 2022	0.036	Jun 30, 2022	0.172
Jul 7, 2022, 0.119 Jul 7, 2022 0.012 Jul 7, 2022 0.162 Jul 10, 2022, 0.119 Jul 10, 2022 0.046 Jul 10, 2022 0.143 Jul 12, 2022, 0.104 Jul 12, 2022 0.035 Jul 12, 2022 0.151 Jul 17, 2022, 0.115 Jul 17, 2022 0.007 Jul 17, 2022 0.169 Jul 20, 2022, 0.112 Jul 20, 2022 0.05 Jul 20, 2022 0.156 Jul 22, 2022, 0.098 Jul 22, 2022 0.009 Jul 22, 2022 0.172 Jul 25, 2022, 0.111 Jul 25, 2022 0.001 Jul 25, 2022 0.191 Jul 27, 2022, 0.105 Jul 27, 2022 0.008 Jul 27, 2022 0.191 Jul 30, 2022, 0.114 Jul 30, 2022 0.008 Jul 30, 2022 0.218 Aug 1, 2022, 0.11 Aug 1, 2022 0.008 Aug 1, 2022 0.236 Aug 4, 2022, 0.11 Aug 4, 2022 0.008 Aug 1, 2022 0.236 Aug 4, 2022, 0.101 Aug 4, 2022 </th <th>Jul 2, 2022,</th> <th>0.12</th> <th>Jul 2, 2022</th> <th>0.079</th> <th>Jul 2, 2022</th> <th>0.109</th>	Jul 2, 2022,	0.12	Jul 2, 2022	0.079	Jul 2, 2022	0.109
Jul 10, 2022, 0.119 Jul 10, 2022 0.046 Jul 10, 2022 0.143 Jul 12, 2022, 0.104 Jul 12, 2022 0.035 Jul 12, 2022 0.151 Jul 17, 2022, 0.115 Jul 17, 2022 0.007 Jul 17, 2022 0.169 Jul 20, 2022, 0.112 Jul 20, 2022 0.05 Jul 20, 2022 0.156 Jul 22, 2022, 0.098 Jul 22, 2022 0.009 Jul 22, 2022 0.172 Jul 25, 2022, 0.111 Jul 25, 2022 0.011 Jul 25, 2022 0.191 Jul 27, 2022, 0.105 Jul 27, 2022 0.008 Jul 27, 2022 0.191 Jul 30, 2022, 0.114 Jul 30, 2022 0.008 Jul 30, 2022 0.218 Aug 1, 2022, 0.11 Aug 1, 2022 0.006 Jul 30, 2022 0.218 Aug 4, 2022, 0.11 Aug 4, 2022 0.008 Aug 1, 2022 0.236 Aug 6, 2022, 0.101 Aug 6, 2022 -0.007 Aug 6, 2022 0.233 Aug 11, 2022, 0.106 Aug 11, 20	Jul 5, 2022,	0.093	Jul 5, 2022	0.036	Jul 5, 2022	0.169
Jul 12, 2022,0.104Jul 12, 20220.035Jul 12, 20220.151Jul 17, 2022,0.115Jul 17, 20220.007Jul 17, 20220.169Jul 20, 2022,0.112Jul 20, 20220.05Jul 20, 20220.156Jul 22, 2022,0.098Jul 22, 20220.009Jul 22, 20220.172Jul 25, 2022,0.111Jul 25, 20220.011Jul 25, 20220.191Jul 27, 2022,0.105Jul 27, 20220.008Jul 27, 20220.225Jul 30, 2022,0.114Jul 30, 20220.006Jul 30, 20220.218Aug 1, 2022,0.11Aug 1, 20220.008Aug 1, 20220.236Aug 4, 2022,0.11Aug 4, 20220.031Aug 4, 20220.236Aug 6, 2022,0.101Aug 6, 2022-0.007Aug 6, 20220.233Aug 9, 2022,0.106Aug 9, 20220.004Aug 9, 20220.272Aug 11, 2022,0.109Aug 11, 2022-0.004Aug 11, 20220.277Aug 14, 2022,0.107Aug 14, 20220.004Aug 14, 20220.284	Jul 7, 2022,	0.119	Jul 7, 2022	0.012	Jul 7, 2022	0.162
Jul 17, 2022,0.115Jul 17, 20220.007Jul 17, 20220.169Jul 20, 2022,0.112Jul 20, 20220.05Jul 20, 20220.156Jul 22, 2022,0.098Jul 22, 20220.009Jul 22, 20220.172Jul 25, 2022,0.111Jul 25, 20220.011Jul 25, 20220.191Jul 27, 2022,0.105Jul 27, 20220.008Jul 27, 20220.225Jul 30, 2022,0.114Jul 30, 20220.006Jul 30, 20220.218Aug 1, 2022,0.11Aug 1, 20220.008Aug 1, 20220.236Aug 4, 2022,0.11Aug 4, 20220.031Aug 4, 20220.228Aug 6, 2022,0.101Aug 6, 2022-0.007Aug 6, 20220.233Aug 9, 2022,0.106Aug 9, 20220.004Aug 9, 20220.272Aug 11, 20220.109Aug 11, 2022-0.004Aug 11, 20220.277Aug 14, 20220.107Aug 14, 20220.004Aug 14, 20220.284	Jul 10, 2022,	0.119	Jul 10, 2022	0.046	Jul 10, 2022	0.143
Jul 20, 2022,0.112Jul 20, 20220.05Jul 20, 20220.156Jul 22, 2022,0.098Jul 22, 20220.009Jul 22, 20220.172Jul 25, 2022,0.111Jul 25, 20220.011Jul 25, 20220.191Jul 27, 2022,0.105Jul 27, 20220.008Jul 27, 20220.225Jul 30, 2022,0.114Jul 30, 20220.006Jul 30, 20220.218Aug 1, 2022,0.11Aug 1, 20220.008Aug 1, 20220.236Aug 4, 2022,0.11Aug 4, 20220.031Aug 4, 20220.228Aug 6, 2022,0.101Aug 6, 2022-0.007Aug 6, 20220.233Aug 9, 2022,0.106Aug 9, 20220.004Aug 9, 20220.272Aug 11, 2022,0.109Aug 11, 2022-0.004Aug 11, 20220.277Aug 14, 2022,0.107Aug 14, 20220.004Aug 11, 20220.284	Jul 12, 2022,	0.104	Jul 12, 2022	0.035	Jul 12, 2022	0.151
Jul 22, 2022,0.098Jul 22, 20220.009Jul 22, 20220.172Jul 25, 2022,0.111Jul 25, 20220.011Jul 25, 20220.191Jul 27, 2022,0.105Jul 27, 20220.008Jul 27, 20220.225Jul 30, 2022,0.114Jul 30, 20220.006Jul 30, 20220.218Aug 1, 2022,0.11Aug 1, 20220.008Aug 1, 20220.236Aug 4, 2022,0.11Aug 4, 20220.031Aug 4, 20220.228Aug 6, 2022,0.101Aug 6, 2022-0.007Aug 6, 20220.233Aug 9, 2022,0.106Aug 9, 20220.004Aug 9, 20220.272Aug 11, 2022,0.107Aug 11, 2022-0.004Aug 11, 20220.277Aug 14, 2022,0.107Aug 14, 20220.004Aug 14, 20220.284	Jul 17, 2022,	0.115	Jul 17, 2022	0.007	Jul 17, 2022	0.169
Jul 25, 2022,0.111Jul 25, 20220.011Jul 25, 20220.191Jul 27, 2022,0.105Jul 27, 20220.008Jul 27, 20220.225Jul 30, 2022,0.114Jul 30, 20220.006Jul 30, 20220.218Aug 1, 2022,0.11Aug 1, 20220.008Aug 1, 20220.236Aug 4, 2022,0.11Aug 4, 20220.031Aug 4, 20220.228Aug 6, 2022,0.101Aug 6, 2022-0.007Aug 6, 20220.233Aug 9, 2022,0.106Aug 9, 20220.004Aug 9, 20220.272Aug 11, 20220.109Aug 11, 2022-0.004Aug 11, 20220.277Aug 14, 20220.107Aug 14, 20220.004Aug 14, 20220.284	Jul 20, 2022,	0.112	Jul 20, 2022	0.05	Jul 20, 2022	0.156
Jul 27, 2022,0.105Jul 27, 20220.008Jul 27, 20220.225Jul 30, 2022,0.114Jul 30, 20220.006Jul 30, 20220.218Aug 1, 2022,0.11Aug 1, 20220.008Aug 1, 20220.236Aug 4, 2022,0.11Aug 4, 20220.031Aug 4, 20220.228Aug 6, 2022,0.101Aug 6, 2022-0.007Aug 6, 20220.233Aug 9, 2022,0.106Aug 9, 20220.004Aug 9, 20220.272Aug 11, 20220.109Aug 11, 2022-0.004Aug 11, 20220.277Aug 14, 20220.107Aug 14, 20220.004Aug 14, 20220.284	Jul 22, 2022,	0.098	Jul 22, 2022	0.009	Jul 22, 2022	0.172
Jul 30, 2022,0.114Jul 30, 20220.006Jul 30, 20220.218Aug 1, 2022,0.11Aug 1, 20220.008Aug 1, 20220.236Aug 4, 2022,0.11Aug 4, 20220.031Aug 4, 20220.228Aug 6, 2022,0.101Aug 6, 2022-0.007Aug 6, 20220.233Aug 9, 2022,0.106Aug 9, 20220.004Aug 9, 20220.272Aug 11, 20220.109Aug 11, 2022-0.004Aug 11, 20220.277Aug 14, 20220.107Aug 14, 20220.004Aug 14, 20220.284	Jul 25, 2022,	0.111	Jul 25, 2022	0.011	Jul 25, 2022	0.191
Aug 1, 2022, Aug 4, 2022,0.11Aug 1, 2022 Aug 4, 2022,0.008Aug 1, 2022 Aug 4, 20220.236Aug 6, 2022, Aug 9, 2022,0.101Aug 6, 2022 Aug 9, 2022,-0.007Aug 6, 2022 Aug 9, 20220.233Aug 11, 2022, Aug 14, 20220.109Aug 11, 2022 Aug 14, 2022-0.004Aug 11, 2022 Aug 14, 20220.277Aug 14, 2022, Aug 14, 20220.107Aug 14, 20220.004Aug 14, 20220.284	Jul 27, 2022,	0.105	Jul 27, 2022	0.008	Jul 27, 2022	0.225
Aug 4, 2022, Aug 6, 2022,0.101Aug 4, 2022 Aug 6, 2022,0.007Aug 6, 2022 Aug 6, 20220.233Aug 9, 2022, Aug 11, 20220.106Aug 9, 2022 Aug 11, 20220.004Aug 9, 2022 Aug 11, 20220.272Aug 14, 20220.107Aug 14, 20220.004Aug 11, 2022 Aug 14, 20220.284	Jul 30, 2022,	0.114	Jul 30, 2022	0.006	Jul 30, 2022	0.218
Aug 6, 2022,0.101Aug 6, 2022-0.007Aug 6, 20220.233Aug 9, 2022,0.106Aug 9, 20220.004Aug 9, 20220.272Aug 11, 20220.109Aug 11, 2022-0.004Aug 11, 20220.277Aug 14, 20220.107Aug 14, 20220.004Aug 14, 20220.284	Aug 1, 2022,	0.11	Aug 1, 2022	0.008	Aug 1, 2022	0.236
Aug 9, 2022,0.106Aug 9, 20220.004Aug 9, 20220.272Aug 11, 20220.109Aug 11, 2022-0.004Aug 11, 20220.277Aug 14, 20220.107Aug 14, 20220.004Aug 14, 20220.284	Aug 4, 2022,	0.11	Aug 4, 2022	0.031	Aug 4, 2022	0.228
Aug 11, 2022 0.109 Aug 11, 2022 -0.004 Aug 11, 2022 0.277 Aug 14, 2022 0.107 Aug 14, 2022 0.004 Aug 14, 2022 0.284	Aug 6, 2022,	0.101	Aug 6, 2022	-0.007	Aug 6, 2022	0.233
Aug 14, 2022 0.107 Aug 14, 2022 0.004 Aug 14, 2022 0.284	Aug 9, 2022,	0.106	Aug 9, 2022	0.004	Aug 9, 2022	0.272
	Aug 11, 2022	0.109	Aug 11, 2022	-0.004	Aug 11, 2022	0.277
Aug 16, 2022 0.105 Aug 16, 2022 0.001 Aug 16, 2022 0.287	Aug 14, 2022	0.107	Aug 14, 2022	0.004	Aug 14, 2022	0.284
	Aug 16, 2022	0.105	Aug 16, 2022	0.001	Aug 16, 2022	0.287

Aug 19, 2022	0.105	Aug 19, 2022	0.004	Aug 19, 2022	0.099
Aug 21, 2022	0.106	Aug 21, 2022	0.003	Aug 21, 2022	0.316
Aug 24, 2022	0.103	Aug 24, 2022	0.014	Aug 24, 2022	0.3
Aug 29, 2022	0.102	Aug 29, 2022	0.009	Aug 29, 2022	0.339
Aug 31, 2022	0.095	Aug 31, 2022	0.127	Aug 31, 2022	0.381
Sep 8, 2022,	0.086	Sep 8, 2022	0.013	Sep 8, 2022	0.407
Sep 13, 2022	0.104	Sep 13, 2022	0.033	Sep 13, 2022	0.434
Sep 15, 2022	0.108	Sep 15, 2022	0.017	Sep 15, 2022	0.479
Sep 18, 2022	0.113	Sep 18, 2022	0.033	Sep 18, 2022	0.473
Sep 20, 2022	0.11	Sep 20, 2022	0.024	Sep 20, 2022	0.482
Sep 23, 2022	0.113	Sep 23, 2022	0.027	Sep 23, 2022	0.157
Sep 25, 2022	0.108	Sep 25, 2022	0.126	Sep 25, 2022	0.133
Sep 28, 2022	0.122	Sep 28, 2022	0.025	Sep 28, 2022	0.462
Sep 30, 2022	0.107	Sep 30, 2022	0.072	Sep 30, 2022	0.362
Oct 5, 2022	0.111	Oct 5, 2022	0.044	Oct 5, 2022	0.455
Oct 8, 2022	0.118	Oct 8, 2022	0.04	Oct 8, 2022	0.448
Oct 10, 2022	0.115	Oct 10, 2022	0.036	Oct 10, 2022	0.447
Oct 13, 2022	0.115	Oct 13, 2022	0.029	Oct 13, 2022	0.432
Oct 23, 2022	0.115	Oct 23, 2022	0.075	Oct 23, 2022	0.358
Oct 25, 2022	0.118	Oct 25, 2022	0.048	Oct 25, 2022	0.437
Oct 28, 2022	0.109	Oct 28, 2022	0.033	Oct 28, 2022	0.455
Oct 30, 2022	0.111	Oct 30, 2022	0.053	Oct 30, 2022	0.455
Nov 2, 2022	0.106	Nov 2, 2022	0.032	Nov 2, 2022	0.48
Nov 4, 2022,	0.096	Nov 4, 2022	0.06	Nov 4, 2022	0.479
Nov 7, 2022,	0.102	Nov 7, 2022	0.046	Nov 7, 2022	0.472
Nov 9, 2022,	0.084	Nov 9, 2022	0.052	Nov 9, 2022	0.492
Nov 12, 2022	0.09	Nov 12, 2022	0.073	Nov 12, 2022	0.397
Nov 14, 2022	0.08	Nov 14, 2022	0.063	Nov 14, 2022	0.493
Nov 17, 2022	0.094	Nov 17, 2022	0.052	Nov 17, 2022	0.464
Dec 2, 2022	0.083	Dec 2, 2022	0.069	Dec 2, 2022	0.255
Dec 24, 2022	0.085	Dec 24, 2022	0.048	Dec 24, 2022	0.473

Dec 27, 2022	0.099	Dec 27, 2022	0.039	Dec 27, 2022	0.171
Jan 11, 2023	0.09	Jan 11, 2023	0.062	Jan 11, 2023	0.214
Jan 16, 2023	0.109	Jan 16, 2023	0.066	Jan 16, 2023	0.399
Jan 23, 2023	0.096	Jan 23, 2023	0.027	Jan 23, 2023	0.016
Feb 17, 2023	0.033	Feb 17, 2023	0.101	Feb 17, 2023	0.449
Feb 25, 2023,	0.127	Feb 25, 2023	0.104	Feb 25, 2023	0.389
Mar 2, 2023,	0.153	Mar 2, 2023	0.114	Mar 2, 2023	0.456
Mar 4, 2023,	0.165	Mar 4, 2023	0.153	Mar 4, 2023	0.426
Apr 6, 2023,	0.211	Apr 6, 2023	0.124	Apr 6, 2023	0.392
Apr 18, 2023,	0.243	Apr 18, 2023	0.089	Apr 18, 2023	0.369
Apr 21, 2023,	0.213	Apr 21, 2023	0.108	Apr 21, 2023	0.378
Apr 23, 2023,	0.202	Apr 23, 2023	0.122	Apr 23, 2023	0.375
Apr 26, 2023,	0.206	Apr 26, 2023	0.102	Apr 26, 2023	0.392
Apr 28, 2023,	0.196	Apr 28, 2023	0.098	Apr 28, 2023	0.398
May 1, 2023,	0.189	May 1, 2023	0.096	May 1, 2023	0.39
May 3, 2023,	0.17	May 3, 2023	0.095	May 3, 2023	0.401
May 11, 2023	0.178	May 11, 2023	0.055	May 11, 2023	0.405
May 13, 2023	0.149	May 13, 2023	0.073	May 13, 2023	0.395
May 16, 2023	0.181	May 16, 2023	0.026	May 16, 2023	0.432
May 18, 2023	0.172	May 18, 2023	0.039	May 18, 2023	0.427
May 21, 2023	0.163	May 21, 2023	0.037	May 21, 2023	0.433
May 23, 2023	0.154	May 23, 2023	0.055	May 23, 2023	0.382
May 26, 2023	0.147	May 26, 2023	0.033	May 26, 2023	0.389
May 28, 2023	0.14	May 28, 2023	0.002	May 28, 2023	0.381
May 31, 2023	0.121	May 31, 2023	0.004	May 31, 2023	0.378
Jun 2, 2023	0.132	Jun 2, 2023	0.022	Jun 2, 2023	0.361
Jun 5, 2023	0.136	Jun 5, 2023	0.015	Jun 5, 2023	0.366
Jun 7, 2023	0.129	Jun 7, 2023	0.008	Jun 7, 2023	0.376
Jun 10, 2023	0.14	Jun 10, 2023	-0.005	Jun 10, 2023	0.367
Jun 12, 2023	0.127	Jun 12, 2023	-0.013	Jun 12, 2023	0.367
Jun 15, 2023	0.133	Jun 15, 2023	-0.004	Jun 15, 2023	0.374

Jun 17, 2023	0.122	Jun 17, 2023	-0.018	Jun 17, 2023	0.374
Jun 20, 2023	0.132	Jun 20, 2023	-0.01	Jun 20, 2023	0.37
Jun 22, 2023	0.124	Jun 22, 2023	-0.011	Jun 22, 2023	0.361
Jun 25, 2023	0.127	Jun 25, 2023	-0.001	Jun 25, 2023	0.366
Jun 27, 2023	0.118	Jun 27, 2023	-0.013	Jun 27, 2023	0.37
Jun 30, 2023	0.114	Jun 30, 2023	-0.004	Jun 30, 2023	0.38
Jul 2, 2023	0.105	Jul 2, 2023	-0.016	Jul 2, 2023	0.393
Jul 5, 2023	0.117	Jul 5, 2023	0.005	Jul 5, 2023	0.391
Jul 7, 2023	0.113	Jul 7, 2023	-0.036	Jul 7, 2023	0.408
Jul 10,2023	0.112	Jul 10, 2023	-0.025	Jul 10, 2023	0.391
Jul 12, 2023	0.133	Jul 12, 2023	-0.04	Jul 12, 2023	0.412
Jul 15, 2023	0.136	Jul 15, 2023	-0.016	Jul 15, 2023	0.436
Jul 17, 2023	0.124	Jul 17, 2023	-0.022	Jul 17, 2023	0.43
Jul 20, 2023	0.124	Jul 20, 2023	-0.004	Jul 20, 2023	0.44
	0.130				

Tabla 18 Datos de cobertura forestal.

LON:-68.26		LON:-68.24		LON:-68.29	
LAT: -16.	56	LAT:-16.57		LAT: -16.57	
Mar 28, 2016	0.024	Mar 28, 2016	0.091	Mar 28, 2016	0.72
May 4, 2016	-0.031	May 4, 2016	0.075	May 4, 2016	0.386
May 7, 2016	-0.068	May 7, 2016	0.038	May 7, 2016	0.433
May 27, 2016	-0.126	May 27, 2016	0.039	May 27, 2016	0.319
Jun 13, 2016	-0.115	Jun 13, 2016	0.051	Jun 13, 2016	0.19
Jun 16, 2016	-0.165	Jun 16, 2016	0.068	Jun 16, 2016	0.206
Aug 25, 2016	-0.014	Aug 25, 2016	0.044	Aug 25, 2016	0.31
Feb 1, 2017	0.022	Feb 1, 2017	0.018	Feb 1, 2017	0.36
Mar 20, 2017	0.036	Mar 20, 2017	0.113	Mar 20, 2017	0.468
May 9, 2017	-0.033	May 9, 2017	0.083	May 9, 2017	0.436
Sep 21, 2017	-0.098	Sep 21, 2017	0.078	Sep 21, 2017	0.545
Sep 24, 2017	-0.08	Sep 24, 2017	0.047	Sep 24, 2017	0.706

Oct 19, 2017	-0.031	Oct 19, 2017	0.06	Oct 19, 2017	0.495
Mar 23, 2018	0.102	Mar 23, 2018	0.077	Mar 23, 2018	0.624
Apr 9, 2018	0.059	Apr 9, 2018	0.094	Apr 9, 2018	0.54
Apr 17, 2018	-0.01	Apr 17, 2018	0.029	Apr 17, 2018	0.485
Apr 19, 2018	-0.01	Apr 19, 2018	0.093	Apr 19, 2018	0.491
Apr 22, 2018	0.092	Apr 22, 2018	0.085	Apr 22, 2018	0.457
May 2, 2018	-0.034	May 2, 2018	0.028	May 2, 2018	0.496
May 7, 2018	-0.069	May 7, 2018	0.031	May 7, 2018	0.518
May 12, 2018	0.044	May 12, 2018	0.038	May 12, 2018	0.495
Jun 18, 2018	-0.185	Jun 18, 2018	0.039	Jun 18, 2018	0.442
Jun 23, 2018	-0.225	Jun 23, 2018	0.064	Jun 23, 2018	0.429
Jun 26, 2018	-0.169	Jun 26, 2018	0.052	Jun 26, 2018	0.459
Jun 28, 2018	-0.221	Jun 28, 2018	0.052	Jun 28, 2018	0.464
Jul 23, 2018	-0.201	Jul 23, 2018	0.064	Jul 23, 2018	0.49
Jul 28, 2018	-0.185	Jul 28, 2018	0.07	Jul 28, 2018	0.474
Aug 12, 2018	-0.163	Aug 12, 2018	0.054	Aug 12, 2018	0.499
Sep 9, 2018	-0.084	Sep 9, 2018	0.058	Sep 9, 2018	0.532
Sep 21, 2018	-0.012	Sep 21, 2018	0.063	Sep 21, 2018	0.439
Oct 16, 2018	-0.062	Oct 16, 2018	0.045	Oct 16, 2018	0.57
Nov 3, 2018	-0.006	Nov 3, 2018	0.067	Nov 3, 2018	0.545
Mar 8, 2019	0.004	Mar 8, 2019	0.049	Mar 8, 2019	0.591
Mar 23, 2019	0.009	Mar 23, 2019	0.107	Mar 23, 2019	0.642
Apr 7, 2019	-0.01	Apr 7, 2019	0.051	Apr 7, 2019	0.557
Apr 9, 2019	-0.015	Apr 9, 2019	0.058	Apr 9, 2019	0.528
May 4, 2019	-0.077	May 4, 2019	0.074	May 4, 2019	0.448
Jun 18, 2019	-0.156	Jun 18, 2019	0.082	Jun 18, 2019	0.369
Jun 28, 2019	-0.154	Jun 28, 2019	0.08	Jun 28, 2019	0.34
Jul 1, 2019	-0.172	Jul 1, 2019	0.035	Jul 1, 2019	0.381
Jul 16, 2019	-0.146	Jul 16, 2019	0.037	Jul 16, 2019	0.433
Sep 16, 2019	-0.105	Sep 16, 2019	-0.004	Sep 16, 2019	0.526
Nov 18, 2019	-0.04	Nov 18, 2019	0.037	Nov 18, 2019	0.65

Apr 1, 2020	0.06	Apr 1, 2020	0.036	Apr 1, 2020	0.749
Apr 6, 2020	0.226	Apr 6, 2020	0.048	Apr 6, 2020	0.687
Apr 16, 2020	-0.003	Apr 16, 2020	0.045	Apr 16, 2020	0.633
Apr 23, 2020	-0.044	Apr 23, 2020	0.072	Apr 23, 2020	0.486
Apr 28, 2020	0.139	Apr 28, 2020	0.026	Apr 28, 2020	0.253
May 1, 2020	-0.098	May 1, 2020	0.076	May 1, 2020	0.507
May 18, 2020	-0.088	May 18, 2020	0.069	May 18, 2020	0.524
May 21, 2020	-0.199	May 21, 2020	0.168	May 21, 2020	0.327
Jun 7, 2020	-0.211	Jun 7, 2020	0.025	Jun 7, 2020	0.508
Jun 15, 2020	-0.152	Jun 15, 2020	0.055	Jun 15, 2020	0.508
Jun 17, 2020	-0.191	Jun 17, 2020	0.077	Jun 17, 2020	0.478
Aug 24, 2020	-0.15	Aug 24, 2020	0.042	Aug 24, 2020	0.54
Aug 26, 2020	-0.159	Aug 26, 2020	0.062	Aug 26, 2020	0.507
Sep 5, 2020	-0.171	Sep 5, 2020	0.043	Sep 5, 2020	0.531
Oct 8, 2020	-0.135	Oct 8, 2020	0.027	Oct 8, 2020	0.601
Dec 12, 2020	-0.028	Dec 12, 2020	0.054	Dec 12, 2020	0.602
Feb 25, 2021	-0.032	Feb 25, 2021	0.093	Feb 25, 2021	0.641
Apr 16, 2021	-0.024	Apr 16, 2021	0.078	Apr 16, 2021	0.672
Apr 18, 2021	-0.018	Apr 18, 2021	0.094	Apr 18, 2021	0.648
Apr 21, 2021	0.039	Apr 21, 2021	0.112	Apr 21, 2021	0.634
Apr 26, 2021	-0.027	Apr 26, 2021	0.088	Apr 26, 2021	0.685
Apr 28, 2021	0.038	Apr 28, 2021	0.095	Apr 28, 2021	0.628
May 1, 2021	0.028	May 1, 2021	0.103	May 1, 2021	0.551
May 3, 2021	-0.157	May 3, 2021	0.091	May 3, 2021	0.663
May 6, 2021	0.007	May 6, 2021	0.051	May 6, 2021	0.534
May 8, 2021	0.021	May 8, 2021	0.077	May 8, 2021	0.674
May 11, 2021	-0.081	May 11, 2021	0.074	May 11, 2021	0.665
May 16, 2021	-0.129	May 16, 2021	0.078	May 16, 2021	0.709
May 18, 2021	-0.169	May 18, 2021	0.093	May 18, 2021	0.637
May 21, 2021	0.02	May 21, 2021	0.054	May 21, 2021	0.576
May 28, 2021	-0.144	May 28, 2021	0.046	May 28, 2021	0.556

Jun 2, 2021	-0.174	Jun 2, 2021	0.052	Jun 2, 2021	0.568
Jun 5, 2021	-0.167	Jun 5, 2021	0.073	Jun 5, 2021	0.578
Jun 7, 2021	-0.16	Jun 7, 2021	0.061	Jun 7, 2021	0.56
Jun 10, 2021	0.035	Jun 10, 2022	0.071	Jun 10, 2021	0.356
Jun 12, 2021	-0.156	Jun 12, 2021	0.052	Jun 12, 2021	0.49
Jun 15, 2021	-0.133	Jun 15, 2021	0.034	Jun 15, 2021	0.474
Jun 17, 2021	-0.127	Jun 17, 2021	0.068	Jun 17, 2021	0.364
Jun 20, 2021	-0.19	Jun 20, 2021	0.031	Jun 20, 2021	0.487
Jun 22, 2021	-0.182	Jun 22, 2021	0.048	Jun 22, 2021	0.459
Jun 25, 2021	-0.162	Jun 25, 2021	0.035	Jun 25, 2021	0.497
Jun 30, 2021	-0.176	Jun 30, 2021	0.072	Jun 30, 2021	0.524
Jul 2, 2021	-0.187	Jul 2, 2021	0.045	Jul 2, 2021	0.507
Jul 5, 2021	-0.181	Jul 5, 2021	0.018	Jul 5, 2021	0.52
Jul 7, 2021	-0.189	Jul 7, 2021	0.039	Jul 7, 2021	0.45
Jul 10, 2021	-0.177	Jul 10, 2021	0.071	Jul 10, 2021	0.441
Jul 12, 2021	-0.207	Jul 12, 2021	0.034	Jul 12, 2021	0.445
Jul 15, 2021	-0.164	Jul 15, 2021	0.026	Jul 15, 2021	0.53
Jul 17, 2021	-0.186	Jul 17, 2021	0.058	Jul 17, 2021	0.519
Jul 20, 2021	-0.157	Jul 20, 2021	0.064	Jul 20, 2021	0.522
Jul 22, 2021	-0.163	Jul 22, 2021	0.055	Jul 22, 2021	0.498
Jul 27, 2021	-0.19	Jul 27, 2021	0.034	Jul 27, 2021	0.481
Jul 30, 2021	-0.029	Jul 30, 2021	0.045	Jul 30, 2021	0.362
Aug 6, 2021	-0.175	Aug 6, 2021	0.049	Aug 6, 2021	0.578
Aug 9, 2021	-0.147	Aug 9, 2021	0.074	Aug 9, 2021	0.582
Aug 11, 2021	-0.177	Aug 11, 2021	0.07	Aug 11, 2021	0.547
Aug 14, 2021	-0.198	Aug 14, 2021	0.043	Aug 14, 2021	0.58
Aug 16, 2021	-0.191	Aug 16, 2021	0.052	Aug 16, 2021	0.525
Aug 19, 2021	-0.163	Aug 19, 2021	0.05	Aug 19, 2021	0.57
Aug 21, 2021	-0.168	Aug 21, 2021	0.056	Aug 21, 2021	0.54
Aug 24, 2021	-0.147	Aug 24, 2021	0.03	Aug 24, 2021	0.631
Aug 26, 2021	-0.131	Aug 26, 2021	0.054	Aug 26, 2021	0.636

Aug 29, 2021	-0.115	Aug 29, 2021	0.05	Aug 29, 2021	0.64
Aug 31, 2021	-0.179	Aug 31, 2021	0.059	Aug 31, 2021	0.671
Sep 3, 2021	-0.13	Sep 3, 2021	0.025	Sep 3, 2021	0.674
Sep 8, 2021	0.007	Sep 8, 2021	0.039	Sep 8, 2021	0.634
Sep 10, 2021	-0.136	Sep 10, 2021	0.052	Sep 10, 2021	0.685
Sep 18, 2021	-0.122	Sep 18, 2021	0.053	Sep 18, 2021	0.744
Sep 20, 2021	-0.166	Sep 20, 2021	0.035	Sep 20, 2021	0.698
Sep 28, 2021	-0.136	Sep 28, 2021	0.048	Sep 28, 2021	0.696
Sep 30, 2021	0.085	Sep 30, 2021	0.056	Sep 30, 2021	0.655
Oct 3, 2021	-0.122	Oct 3, 2021	0.055	Oct 3, 2021	0.642
Oct 13, 2021	-0.079	Oct 13, 2021	0.04	Oct 13, 2021	0.678
Oct 15, 2021	-0.12	Oct 15, 2021	0.058	Oct 15, 2021	0.693
Oct 18, 2021	-0.086	Oct 18, 2021	0.048	Oct 18, 2021	0.737
Oct 20, 2021	0.065	Oct 20, 2021	0.064	Oct 20, 2021	0.658
Oct 23, 2021	-0.046	Oct 23, 2021	0.058	Oct 23, 2021	0.738
Oct 25, 2021	-0.065	Oct 25, 2021	0.055	Oct 25, 2021	0.687
Oct 30, 2021	-0.102	Oct 30, 2021	0.036	Oct 30, 2021	0.659
Nov 7, 2021	0.059	Nov 7, 2021	0.06	Nov 7, 2021	0.4
Nov 22, 2021	0.021	Nov 22, 2021	0.049	Nov 22, 2021	0.441
Dec 12, 2021	0.074	Dec 12, 2021	0.057	Dec 12, 2021	0.735
Jan 1, 2022	-0.049	Jan 1, 2022	0.069	Jan 1, 2022	0.747
Jan 3, 2022	0.219	Jan 3, 2022	0.034	Jan 3, 2022	0.68
Feb 5, 2022	0.074	Feb 5, 2022	0.073	Feb 5, 2022	0.343
Feb 20, 2022	0.001	Feb 20, 2022	0.041	Feb 20, 2022	0.53
Mar 29, 2022	-0.022	Mar 29, 2022	0.062	Mar 29, 2022	0.533
Apr 6, 2022	-0.017	Apr 6, 2022	0.053	Apr 6, 2022	0.367
Apr 11, 2022	-0.03	Apr 11, 2022	0.04	Apr 11, 2022	0.385
Apr 13, 2022	-0.017	Apr 13, 2022	0.057	Apr 13, 2022	0.343
Apr 16, 2022	-0.049	Apr 16, 2022	0.037	Apr 16, 2022	0.483
Apr 18, 2022	-0.048	Apr 18, 2022	0.057	Apr 18, 2022	0.454
Apr 21, 2022	-0.054	Apr 21, 2022	0.04	Apr 21, 2022	0.445

Apr 23, 2022	0.01	Apr 23, 2022	0.056	Apr 23, 2022	0.374
Apr 26, 2022 -0	0.053	Apr 26, 2022	0.062	Apr 26, 2022	0.423
Apr 28, 2022	0.001	Apr 28, 2022	0.054	Apr 28, 2022	0.401
May 1, 2022 -0	0.048	May 1, 2022	0.022	May 1, 2022	0.391
May 3, 2022 -0	0.037	May 3, 2022	0.027	May 3, 2022	0.38
May 6, 2022 -0	0.042	May 6, 2022	0.033	May 6, 2022	0.386
May 11, 2022 -0	0.041	May 11, 2022	0.036	May 11, 2022	0.389
May 13, 2022 -0	0.046	May 13, 2022	0.045	May 13, 2022	0.388
May 16, 2022 -0	0.052	May 16, 2022	0.029	May 16, 2022	0.411
May 18, 2022 -0	0.053	May 18, 2022	0.038	May 18, 2022	0.392
May 21, 2022 -0	0.055	May 21, 2022	0.047	May 21, 2022	0.397
May 23, 2022 -0	0.049	May 23, 2022	0.053	May 23, 2022	0.395
May 26, 2022 0	0.034	May 26, 2022	0.045	May 26, 2022	0.176
May 28, 2022 -0	0.052	May 28, 2022	0.053	May 28, 2022	0.402
May 31, 2022 -0	0.028	May 31, 2022	0.028	May 31, 2022	0.365
Jun 2, 2022 -0	0.006	Jun 2, 2022	0.027	Jun 2, 2022	0.301
Jun 7, 2022 -0	0.059	Jun 7, 2022	0.019	Jun 7, 2022	0.444
Jun 10, 2022 0	0.003	Jun 10, 2022	0.015	Jun 10, 2022	0.264
Jun 12, 2022 -0	0.046	Jun 12, 2022	0.052	Jun 12, 2022	0.407
Jun 15, 2022 -0	0.054	Jun 15, 2022	0.026	Jun 15, 2022	0.372
Jun 17, 2022 -0	0.053	Jun 17, 2022	0.045	Jun 17, 2022	0.356
Jun 20, 2022 -0	0.055	Jun 20, 2022	0.018	Jun 20, 2022	0.341
Jun 22, 2022 -0	0.051	Jun 22, 2022	0.03	Jun 22, 2022	0.332
Jun 25, 2022 -0	0.051	Jun 25, 2022	0.041	Jun 25, 2022	0.354
Jun 27, 2022 -0	0.065	Jun 27, 2022	0.027	Jun 27, 2022	0.346
Jun 30, 2022 -0	0.053	Jun 30, 2022	0.026	Jun 30, 2022	0.362
Jul 2, 2022 -0	0.003	Jul 2, 2022	0.028	Jul 2, 2022	0.262
Jul 5, 2022 -0	0.039	Jul 5, 2022	0.025	Jul 5, 2022	0.346
Jul 7, 2022 -0	0.053	Jul 7, 2022	0.038	Jul 7, 2022	0.344
Jul 10, 2022 -0	0.031	Jul 10, 2022	0.018	Jul 10, 2022	0.297
Jul 12, 2022 -0	0.038	Jul 12, 2022	0.032	Jul 12, 2022	0.326

Jul 17, 2022	-0.052	Jul 17, 2022	0.021	Jul 17, 2022	0.352
Jul 20, 2022	0.008	Jul 20, 2022	0.04	Jul 20, 2022	0.237
Jul 22, 2022	-0.058	Jul 22, 2022	0.048	Jul 22, 2022	0.353
Jul 25, 2022	-0.041	Jul 25, 2022	0.027	Jul 25, 2022	0.342
Jul 27, 2022	-0.044	Jul 27, 2022	0.037	Jul 27, 2022	0.371
Jul 30, 2022	-0.052	Jul 30, 2022	0.028	Jul 30, 2022	0.34
Aug 1, 2022	-0.051	Aug 1, 2022	0.038	Aug 1, 2022	0.333
Aug 4, 2022	-0.03	Aug 4, 2022	0.006	Aug 4, 2022	0.304
Aug 6, 2022	0.005	Aug 6, 2022	0.012	Aug 6, 2022	0.154
Aug 9, 2022	-0.051	Aug 9, 2022	0.016	Aug 9, 2022	0.397
Aug 11, 2022	-0.056	Aug 11, 2022	0.03	Aug 11, 2022	0.4
Aug 14, 2022	-0.047	Aug 14, 2022	0.044	Aug 14, 2022	0.404
Aug 16, 2022	-0.058	Aug 16, 2022	0.04	Aug 16, 2022	0.411
Aug 19, 2022	-0.128	Aug 19, 2022	-0.018	Aug 19, 2022	0.428
Aug 21, 2022	-0.065	Aug 21, 2022	0.034	Aug 21, 2022	0.442
Aug 24, 2022	-0.062	Aug 24, 2022	0.029	Aug 24, 2022	0.45
Aug 26, 2022	-0.067	Aug 26, 2022	0.046	Aug 26, 2022	0.426
Aug 29, 2022	-0.064	Aug 29, 2022	0.018	Aug 29, 2022	0.406
Aug 31, 2022	-0.053	Aug 31, 2022	0.038	Aug 31, 2022	0.357
Sep 8, 2022	-0.062	Sep 8, 2022	0.026	Sep 8, 2022	0.483
Sep 13, 2022	-0.059	Sep 13, 2022	0.027	Sep 13, 2022	0.507
Sep 15, 2022	-0.063	Sep 15, 2022	0.016	Sep 15, 2022	0.53
Sep 18, 2022	-0.054	Sep 18, 2022	0.027	Sep 18, 2022	0.497
Sep 20, 2022	-0.061	Sep 20, 2022	0.027	Sep 20, 2022	0.478
Sep 23, 2022	-0.043	Sep 23, 2022	0.029	Sep 23, 2022	0.258
Sep 25, 2022	0.069	Sep 25, 2022	0.021	Sep 25, 2022	0.055
Sep 28, 2022	-0.057	Sep 28, 2022	0.039	Sep 28, 2022	0.362
Sep 30, 2022	-0.016	Sep 30, 2022	0.036	Sep 30, 2022	0.266
Oct 5, 2022	-0.057	Oct 5, 2022	0.03	Oct 5, 2022	0.331
Oct 8, 2022	-0.057	Oct 8, 2022	0.023	Oct 8, 2022	0.31
Oct 10, 2022	-0.061	Oct 10, 2022	0.026	Oct 10, 2022	0.31

Oct 20, 2022	0.076	Oct 20, 2022	0.027	Oct 20, 2022	0.308
Oct 23, 2022	-0.034	Oct 23, 2022	0.028	Oct 23, 2022	0.25
Oct 25, 2022	-0.054	Oct 25, 2022	0.022	Oct 25, 2022	0.327
Oct 28, 2022	-0.045	Oct 28, 2022	0.02	Oct 28, 2022	0.34
Oct 30, 2022	-0.05	Oct 30, 2022	0.034	Oct 30, 2022	0.331
Nov 2, 2022	-0.048	Nov 2, 2022	0.025	Nov 2, 2022	0.363
Nov 4, 2022	-0.041	Nov 4, 2022	0.025	Nov 4, 2022	0.401
Nov 7, 2022	-0.045	Nov 7, 2022	0.021	Nov 7, 2022	0.378
Nov 9, 2022	-0.048	Nov 9, 2022	0.028	Nov 9, 2022	0.391
Nov 12, 2022	0.007	Nov 12, 2022	0.027	Nov 12, 2022	0.349
Nov 14, 2022	-0.036	Nov 14, 2022	0.032	Nov 14, 2022	0.393
Nov 17, 2022	-0.039	Nov 17, 2022	0.022	Nov 17, 2022	0.34
Dec 2, 2022	0.01	Dec 2, 2022	0.034	Dec 2, 2022	0.261
Dec 24, 2022	-0.037	Dec 24, 2022	0.036	Dec 24, 2022	0.462
Dec 27, 2022	-0.038	Dec 27, 2022	0.034	Dec 27, 2022	0.425
Jan 11, 2023	-0.038	Jan 11, 2023	0.033	Jan 11, 2023	0.406
Jan 16, 2023	-0.035	Jan 16, 2023	0.034	Jan 16, 2023	0.387
Jan 23, 2023	0.012	Jan 23, 2023	0.036	Jan 23, 2023	0.096
Feb 17, 2023	0	Feb 17, 2023	0.035	Feb 17, 2023	0.533
Feb 25, 2023	0.028	Feb 25, 2023	0.04	Feb 25, 2023	0.472
Mar 2, 2023	-0.019	Mar 2, 2023	0.027	Mar 2, 2023	0.491
Mar 4, 2023	0.002	Mar 4, 2023	0.05	Mar 4, 2023	0.492
Apr 6, 2023	-0.03	Apr 6, 2023	0.035	Apr 6, 2023	0.484
Apr 18, 2023	-0.04	Apr 18, 2023	0.03	Apr 18, 2023	0.532
Apr 21, 2023	-0.03	Apr 21, 2023	0.031	Apr 21, 2023	0.528
Apr 23, 2023	-0.033	Apr 23, 2023	0.042	Apr 23, 2023	0.535
Apr 26, 2023	-0.039	Apr 26, 2023	0.015	Apr 26, 2023	0.55
Apr 28, 2023	-0.036	Apr 28, 2023	0.019	Apr 28, 2023	0.55
May 1, 2023	-0.029	May 1, 2023	0.027	May 1, 2023	0.535
May 3, 2023	-0.047	May 3, 2023	0.028	May 3, 2023	0.538
May 11, 2023	-0.016	May 11, 2023	0.007	May 11, 2023	0.483

May 13, 2023	-0.034	May 13, 2023	0.01	May 13, 2023	0.542
May 16, 2023	-0.056	May 16, 2023	0.039	May 16, 2023	0.537
May 18, 2023	-0.048	May 18, 2023	0.038	May 18, 2023	0.52
May 21, 2023	-0.043	May 21, 2023	0.021	May 21, 2023	0.501
May 23, 2023	-0.033	May 23, 2023	0.021	May 23, 2023	0.454
May 26, 2023	-0.044	May 26, 2023	-0.003	May 26, 2023	0.44
May 28, 2023	-0.052	May 28, 2023	0.019	May 28, 2023	0.429
May 31, 2023	-0.044	May 31, 2023	0.022	May 31, 2023	0.417
Jun 2, 2023	-0.042	Jun 2, 2023	0.026	Jun 2, 2023	0.411
Jun 5, 2023	-0.041	Jun 5, 2023	0.041	Jun 5, 2023	0.396
Jun 7, 2023	-0.049	Jun 7, 2023	0.041	Jun 7, 2023	0.402
Jun 10, 2023	-0.046	Jun 10, 2023	0.038	Jun 10, 2023	0.377
Jun 12, 2023	-0.052	Jun 12, 2023	0.03	Jun 12, 2023	0.384
Jun 15, 2023	-0.046	Jun 15, 2023	0.025	Jun 15, 2023	0.393
Jun 17, 2023	-0.046	Jun 17, 2023	0.036	Jun 17, 2023	0.377
Jun 20, 2023	-0.044	Jun 20, 2023	0.035	Jun 20, 2023	0.357
Jun 22, 2023	-0.044	Jun 22, 2023	0.031	Jun 22, 2023	0.381
Jun 25, 2023	-0.041	Jun 25, 2023	0.028	Jun 25, 2023	0.373
Jun 27, 2023	-0.052	Jun 27, 2023	0.044	Jun 27, 2023	0.373
Jun 30, 2023	-0.052	Jun 30, 2023	0.032	Jun 30, 2023	0.382
Jul 2, 2023	-0.055	Jul 2, 2023	0.04	Jul 2, 2023	0.347
Jul 5, 2023	-0.042	Jul 5, 2023	0.03	Jul 5, 2023	0.398
Jul 7, 2023	-0.052	Jul 7, 2023	0.042	Jul 7, 2023	0.41
Jul 10, 2023	-0.054	Jul 10, 2023	0.058	Jul 10, 2023	0.399
Jul 12, 2023	-0.043	Jul 12, 2023	0.047	Jul 12, 2023	0.418
Jul 15, 2023	-0.047	Jul 15, 2023	0.037	Jul 15, 2023	0.435
Jul 17, 2023	-0.053	Jul 17, 2023	0.035	Jul 17, 2023	0.427
Jul 20, 2023	-0.05	Jul 20, 2023	0.004	Jul 20, 2023	0.457
Jul 22, 2023	-0.042	Jul 22, 2023	0.031	Jul 22, 2023	0.455

Tabla 19 Datos de cobertura forestal.

LON:-68.30 LON		LON: -68	.30	LON:-68.35	
LAT:-16.6	65	LAT: -16.66 LAT: -		LAT: -16	.87
Mar 28, 2016	0.225	Mar 28, 2016	0.364	Mar 28, 2016	0.204
May 4, 2016	0.197	May 4, 2016	0.255	May 4, 2016	0.202
May 7, 2016	0.139	May 7, 2016	0.21	May 7, 2016	0.166
May 27, 2016	0.139	May 27, 2016	0.158	May 27, 2016	0.166
Jun13, 2016	0.148	Jun 13, 2016	0.139	Jun 13, 2016	0.151
Jun16, 2016	0.146	Jun 16, 2016	0.158	Jun 16, 2016	0.163
Aug 25, 2016	0.107	Aug 25, 2016	0.13	Aug 25, 2016	0.145
Feb 1, 2017	0.253	Feb 1, 2017	0.18	Feb 1, 2017	0.184
Mar 20, 2017	0.417	Mar 20, 2017	0.336	Mar 20, 2017	0.101
May 9, 2017	0.255	May 9, 2017	0.272	May 9, 2017	0.224
Sep 21, 2017	0.135	Sep 21, 2017	0.179	Sep 21, 2017	0.166
Sep 24, 2017	0.139	Sep 24, 2017	0.197	Sep 24, 2017	0.147
Oct 19, 2017	0.152	Oct 19, 2017	0.222	Oct 19, 2017	0.172
Mar 23, 2018	0.448	Mar 23, 2018	0.262	Mar 23, 2018	-0.021
Apr 9, 2018	0.449	Apr 9, 2018	0.193	Apr 9, 2018	0.228
Apr 17, 2018	0.304	Apr 17, 2018	0.229	Apr 17, 2018	0.243
Apr 19, 2018	0.373	Apr 19, 2018	0.193	Apr 19, 2018	0.221
Apr 22, 2018	0.328	Apr 22, 2018	0.189	Apr 22, 2018	0.218
May 2, 2018	0.268	May 2, 2018	0.214	May 2, 2018	0.234
May 7, 2018	0.333	May 7, 2018	0.252	May 7, 2018	0.234
May 12, 2018	0.237	May 12, 2018	0.216	May 12, 2018	0.22
Jun 18, 2018	0.16	Jun 18, 2018	0.174	Jun 18, 2018	0.162
Jun23, 2018	0.176	Jun 23, 2018	0.166	Jun 23, 2018	0.164
Jun26, 2018	0.177	Jun 26, 2018	0.162	Jun 26, 2018	0.16
Jun28, 2018	0.185	Jun 28, 2018	0.165	Jun 28, 2018	0.168
Jul 23, 2018	0.166	Jul 23, 2018	0.202	Jul 23, 2018	0.137
Jul 28, 2018	0.15	Jul 28, 2018	0.163	Jul 28, 2018	0.162

Aug 12, 2018 0.15 Aug 12, 2018 0.159 Aug 12, 2018 0.136 Sep 9, 2018 0.142 Sep 9, 2018 0.152 Sep 9, 2018 0.137 Sep 21, 2018 0.122 Sep 21, 2018 0.138 Sep 21, 2018 0.148 Oct 16, 2018 0.136 Oct 16, 2018 0.201 Oct 16, 2018 0.159 Nov 3, 2018 0.16 Nov 3, 2018 0.235 Nov 3, 2018 0.16 Mar 8, 2019 0.309 Mar 8, 2019 0.325 Mar 8, 2019 0.234 Apr 7, 2019 0.312 Apr 7, 2019 0.297 Apr 7, 2019 0.247 Apr 7, 2019 0.328 Apr 9, 2019 0.276 Apr 9, 2019 0.251 Apr 9, 2019 0.224 May 4, 2019 0.224 May 4, 2019 0.21 Jun18, 2019 0.186 Jun 18, 2019 0.165 Jun 18, 2019 0.162 Jul 1, 2019 0.155 Jul 1, 2019 0.156 Jul 1, 2019 0.162 Jul 16, 2019 0.18 Jul 16, 2019 0.145 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>						
Sep 21, 2018 0.122 Sep 21, 2018 0.138 Sep 21, 2018 0.148 Oct 16, 2018 0.136 Oct 16, 2018 0.201 Oct 16, 2018 0.159 Nov 3, 2018 0.176 Nov 3, 2018 0.235 Nov 3, 2018 0.16 Mar 8, 2019 0.309 Mar 8, 2019 0.325 Mar 8, 2019 0.234 Mar 23, 2019 0.312 Apr 7, 2019 0.297 Apr 7, 2019 0.251 Apr 9, 2019 0.328 Apr 9, 2019 0.224 Apr 9, 2019 0.104 May 4, 2019 0.286 May 4, 2019 0.224 May 4, 2019 0.104 Jun18, 2019 0.186 Jun 18, 2019 0.145 Jun 18, 2019 0.162 Jul 1, 2019 0.187 Jul 12, 2019 0.141 Jun 28, 2019 0.184 Jul 1, 2019 0.155 Jul 1, 2019 0.156 Jul 16, 2019 0.179 Jul 16, 2019 0.108 Jul 16, 2019 0.174 Sep 16, 2019 0.175 Sep 16, 2019 0.129 Sep 16, 2019 0	Aug 12, 2018	0.15	Aug 12, 2018	0.159	Aug 12, 2018	0.136
Oct 16, 2018 0.136 Oct 16, 2018 0.201 Oct 16, 2018 0.156 Nov 3, 2018 0.176 Nov 3, 2018 0.235 Nov 3, 2018 0.16 Mar 8, 2019 0.309 Mar 8, 2019 0.325 Mar 8, 2019 0.234 Mar 23, 2019 0.312 Apr 7, 2019 0.297 Apr 7, 2019 0.251 Apr 9, 2019 0.328 Apr 9, 2019 0.276 Apr 9, 2019 0.104 May 4, 2019 0.286 May 4, 2019 0.224 May 4, 2019 0.140 May 4, 2019 0.186 Jun 18, 2019 0.165 Jun 18, 2019 0.184 Jun28, 2019 0.147 Jun 28, 2019 0.145 Jun 18, 2019 0.162 Jul 1, 2019 0.155 Jul 1, 2019 0.155 Jul 16, 2019 0.145 Jul 16, 2019 0.155 Jul 16, 2019 0.135 Jul 16, 2019 0.145 Sep 16, 2019 0.129 Sep 16, 2019 0.174 Sep 16, 2019 0.175 Jun 9, 2020 0.234 Jan 9, 2020 0.2	Sep 9, 2018	0.142	Sep 9, 2018	0.152	Sep 9, 2018	0.137
Nov 3, 2018 0.176 Nov 3, 2018 0.235 Mor 8, 2019 0.234 Mar 8, 2019 0.309 Mar 8, 2019 0.325 Mar 8, 2019 0.234 Mar 23, 2019 0.319 Mar 23, 2019 0.297 Apr 7, 2019 0.251 Apr 9, 2019 0.328 Apr 9, 2019 0.276 Apr 9, 2019 0.104 May 4, 2019 0.286 May 4, 2019 0.224 May 4, 2019 0.184 Jun18, 2019 0.147 Jun 28, 2019 0.145 Jun 18, 2019 0.165 Jul 1, 2019 0.155 Jul 1, 2019 0.156 Jul 1, 2019 0.162 Jul 1, 2019 0.155 Jul 1, 2019 0.156 Jul 1, 2019 0.179 Jul 6, 2019 0.108 Jul 16, 2019 0.135 Jul 16, 2019 0.145 Sep 16, 2019 0.129 Sep 16, 2019 0.174 Sep 16, 2019 0.175 Jan 9, 2020 0.234 Jan 9, 2020 0.284 Apr 1, 2020 0.188 Apr 1, 2020 0.33 Apr 1, 2020 0.318 <th>Sep 21, 2018</th> <th>0.122</th> <th>Sep 21, 2018</th> <th>0.138</th> <th>Sep 21, 2018</th> <th>0.148</th>	Sep 21, 2018	0.122	Sep 21, 2018	0.138	Sep 21, 2018	0.148
Mar 8, 2019 0.309 Mar 8, 2019 0.325 Mar 8, 2019 0.234 Mar 23, 2019 0.319 Mar 23, 2019 0.353 Mar 23, 2019 0.247 Apr 7, 2019 0.312 Apr 7, 2019 0.297 Apr 7, 2019 0.251 Apr 9, 2019 0.328 Apr 9, 2019 0.264 Apr 9, 2019 0.104 May 4, 2019 0.286 May 4, 2019 0.224 May 4, 2019 0.184 Jun18, 2019 0.147 Jun 28, 2019 0.165 Jun 18, 2019 0.162 Jul 1, 2019 0.155 Jul 1, 2019 0.156 Jul 1, 2019 0.179 Jul 16, 2019 0.155 Jul 16, 2019 0.135 Jul 16, 2019 0.179 Sep 16, 2019 0.108 Jul 16, 2019 0.145 Sep 16, 2019 0.174 Sep 16, 2019 0.175 Nov 18, 2019 0.135 Nov 18, 2019 0.188 Nov 18, 2019 0.155 Jan 9, 2020 0.234 Jan 9, 2020 0.254 Apr 1, 2020 0.284 Apr 1, 2020 0.	Oct 16, 2018	0.136	Oct 16, 2018	0.201	Oct 16, 2018	0.159
Mar 23, 2019 0.319 Mar 23, 2019 0.353 Mar 23, 2019 0.247 Apr 7, 2019 0.312 Apr 7, 2019 0.297 Apr 7, 2019 0.251 Apr 9, 2019 0.328 Apr 9, 2019 0.276 Apr 9, 2019 0.104 May 4, 2019 0.224 May 4, 2019 0.21 Jun18, 2019 0.146 Jun 18, 2019 0.165 Jun 18, 2019 0.184 Jun28, 2019 0.147 Jun 28, 2019 0.141 Jun 28, 2019 0.162 Jul 1, 2019 0.155 Jul 1, 2019 0.156 Jul 1, 2019 0.179 Jul 6, 2019 0.108 Jul 16, 2019 0.135 Jul 16, 2019 0.145 Sep 16, 2019 0.129 Sep 16, 2019 0.174 Sep 16, 2019 0.077 Nov 18, 2019 0.135 Nov 18, 2019 0.188 Nov 18, 2019 0.155 Jan 9, 2020 0.234 Jan 9, 2020 0.254 Jan 9, 2020 0.188 Apr 1, 2020 0.33 Apr 1, 2020 0.348 Apr 6, 2020 0.25	Nov 3, 2018	0.176	Nov 3, 2018	0.235	Nov 3, 2018	0.16
Apr 7, 2019 0.312 Apr 7, 2019 0.297 Apr 9, 2019 0.251 Apr 9, 2019 0.328 Apr 9, 2019 0.276 Apr 9, 2019 0.104 May 4, 2019 0.286 May 4, 2019 0.224 May 4, 2019 0.21 Jun18, 2019 0.186 Jun 18, 2019 0.165 Jun 18, 2019 0.184 Jun28, 2019 0.147 Jun 28, 2019 0.141 Jun 28, 2019 0.162 Jul 1, 2019 0.155 Jul 1, 2019 0.156 Jul 1, 2019 0.179 Jul 16, 2019 0.155 Jul 16, 2019 0.135 Jul 16, 2019 0.145 Sep 16, 2019 0.129 Sep 16, 2019 0.135 Jul 16, 2019 0.145 Sep 16, 2019 0.129 Sep 16, 2019 0.144 Sep 16, 2019 0.077 Nov 18, 2019 0.135 Nov 18, 2019 0.188 Nov 18, 2019 0.155 Jan 9, 2020 0.234 Jan 9, 2020 0.254 Jan 9, 2020 0.188 Apr 1, 2020 0.318 Apr 1, 2020 0.	Mar 8, 2019	0.309	Mar 8, 2019	0.325	Mar 8, 2019	0.234
Apr 9, 2019 0.328 Apr 9, 2019 0.276 Apr 9, 2019 0.104 May 4, 2019 0.286 May 4, 2019 0.224 May 4, 2019 0.21 Jun18, 2019 0.186 Jun 18, 2019 0.165 Jun 18, 2019 0.184 Jun28, 2019 0.147 Jun 28, 2019 0.141 Jun 28, 2019 0.162 Jul 1, 2019 0.155 Jul 16, 2019 0.156 Jul 16, 2019 0.179 Jul 16, 2019 0.108 Jul 16, 2019 0.135 Jul 16, 2019 0.145 Sep 16, 2019 0.129 Sep 16, 2019 0.174 Sep 16, 2019 0.077 Nov 18, 2019 0.135 Nov 18, 2019 0.188 Nov 18, 2019 0.155 Jan 9, 2020 0.234 Jan 9, 2020 0.254 Jan 9, 2020 0.188 Apr 1, 2020 0.33 Apr 1, 2020 0.318 Apr 1, 2020 0.242 Apr 6, 2020 0.372 Apr 16, 2020 0.274 Apr 16, 2020 0.237 Apr 28, 2020 0.278 Apr 28, 2020	Mar 23, 2019	0.319	Mar 23, 2019	0.353	Mar 23, 2019	0.247
May 4, 2019 0.286 May 4, 2019 0.224 May 4, 2019 0.21 Jun18, 2019 0.186 Jun 18, 2019 0.165 Jun 18, 2019 0.184 Jun28, 2019 0.147 Jun 28, 2019 0.141 Jun 28, 2019 0.162 Jul 1, 2019 0.155 Jul 1, 2019 0.156 Jul 1, 2019 0.179 Jul 16, 2019 0.108 Jul 16, 2019 0.135 Jul 16, 2019 0.145 Sep 16, 2019 0.129 Sep 16, 2019 0.174 Sep 16, 2019 0.077 Nov 18, 2019 0.135 Nov 18, 2019 0.188 Nov 18, 2019 0.155 Jan 9, 2020 0.234 Jan 9, 2020 0.254 Jan 9, 2020 0.188 Apr 1, 2020 0.33 Apr 1, 2020 0.318 Apr 1, 2020 0.242 Apr 6, 2020 0.372 Apr 6, 2020 0.334 Apr 6, 2020 0.253 Apr 16, 2020 0.287 Apr 16, 2020 0.274 Apr 16, 2020 0.237 Apr 28, 2020 0.287 Apr 28, 2020 0	Apr 7, 2019	0.312	Apr 7, 2019	0.297	Apr 7, 2019	0.251
Jun18, 2019 0.186 Jun 18, 2019 0.165 Jun 18, 2019 0.184 Jun28, 2019 0.147 Jun 28, 2019 0.141 Jun 28, 2019 0.162 Jul 1, 2019 0.155 Jul 1, 2019 0.156 Jul 1, 2019 0.179 Jul 16, 2019 0.108 Jul 16, 2019 0.135 Jul 16, 2019 0.145 Sep 16, 2019 0.129 Sep 16, 2019 0.174 Sep 16, 2019 0.077 Nov 18, 2019 0.135 Nov 18, 2019 0.188 Nov 18, 2019 0.155 Jan 9, 2020 0.234 Jan 9, 2020 0.254 Jan 9, 2020 0.188 Apr 1, 2020 0.33 Apr 1, 2020 0.318 Apr 1, 2020 0.242 Apr 6, 2020 0.372 Apr 6, 2020 0.334 Apr 6, 2020 0.253 Apr 16, 2020 0.274 Apr 16, 2020 0.237 Apr 23, 2020 0.284 Apr 23, 2020 0.275 Apr 28, 2020 0.223 May 1, 2020 0.248 May 1, 2020 0.2 May 18, 2020 0	Apr 9, 2019	0.328	Apr 9, 2019	0.276	Apr 9, 2019	0.104
Jun28, 2019 0.147 Jun 28, 2019 0.141 Jun 28, 2019 0.162 Jul 1, 2019 0.155 Jul 1, 2019 0.156 Jul 1, 2019 0.179 Jul 16, 2019 0.108 Jul 16, 2019 0.135 Jul 16, 2019 0.145 Sep 16, 2019 0.129 Sep 16, 2019 0.174 Sep 16, 2019 0.077 Nov 18, 2019 0.135 Nov 18, 2019 0.188 Nov 18, 2019 0.155 Jan 9, 2020 0.234 Jan 9, 2020 0.254 Jan 9, 2020 0.188 Apr 1, 2020 0.33 Apr 1, 2020 0.318 Apr 1, 2020 0.242 Apr 6, 2020 0.372 Apr 6, 2020 0.344 Apr 6, 2020 0.254 Apr 16, 2020 0.287 Apr 16, 2020 0.274 Apr 16, 2020 0.237 Apr 23, 2020 0.284 Apr 28, 2020 0.252 Apr 28, 2020 0.223 May 1, 2020 0.248 May 1, 2020 0.236 May 18, 2020 0.203 May 21, 2020 0.215 May 21, 2020 <t< th=""><th>May 4, 2019</th><th>0.286</th><th>May 4, 2019</th><th>0.224</th><th>May 4, 2019</th><th>0.21</th></t<>	May 4, 2019	0.286	May 4, 2019	0.224	May 4, 2019	0.21
Jul 1, 2019 0.155 Jul 1, 2019 0.156 Jul 1, 2019 0.179 Jul 16, 2019 0.108 Jul 16, 2019 0.135 Jul 16, 2019 0.145 Sep 16, 2019 0.129 Sep 16, 2019 0.174 Sep 16, 2019 0.077 Nov 18, 2019 0.135 Nov 18, 2019 0.188 Nov 18, 2019 0.155 Jan 9, 2020 0.234 Jan 9, 2020 0.254 Jan 9, 2020 0.188 Apr 1, 2020 0.33 Apr 1, 2020 0.318 Apr 1, 2020 0.242 Apr 6, 2020 0.372 Apr 6, 2020 0.334 Apr 6, 2020 0.233 Apr 16, 2020 0.287 Apr 16, 2020 0.274 Apr 16, 2020 0.237 Apr 23, 2020 0.287 Apr 23, 2020 0.275 Apr 23, 2020 0.052 Apr 28, 2020 0.278 Apr 28, 2020 0.236 May 1, 2020 0.203 May 1, 2020 0.248 May 18, 2020 0.236 May 18, 2020 0.203 May 21, 2020 0.215 May 21, 2020 <	Jun18, 2019	0.186	Jun 18, 2019	0.165	Jun 18, 2019	0.184
Jul 16, 20190.108Jul 16, 20190.135Jul 16, 20190.145Sep 16, 20190.129Sep 16, 20190.174Sep 16, 20190.077Nov 18, 20190.135Nov 18, 20190.188Nov 18, 20190.155Jan 9, 20200.234Jan 9, 20200.254Jan 9, 20200.188Apr 1, 20200.33Apr 1, 20200.318Apr 1, 20200.242Apr 6, 20200.372Apr 6, 20200.334Apr 6, 20200.253Apr 16, 20200.287Apr 16, 20200.274Apr 16, 20200.237Apr 23, 20200.28Apr 23, 20200.275Apr 23, 20200.052May 1, 20200.248May 1, 20200.252Apr 28, 20200.203May 18, 20200.248May 18, 20200.236May 18, 20200.209May 18, 20200.215May 21, 20200.2May 18, 20200.203Jun 7, 20200.169Jun 7, 20200.169Jun 7, 20200.183Jun15, 20200.171Jun 15, 20200.163Jun 17, 20200.162Jun17, 20200.14Aug 24, 20200.136Aug 24, 20200.137Aug 26, 20200.11Aug 26, 20200.141Aug 26, 20200.141	Jun28, 2019	0.147	Jun 28, 2019	0.141	Jun 28, 2019	0.162
Sep 16, 2019 0.129 Sep 16, 2019 0.174 Sep 16, 2019 0.077 Nov 18, 2019 0.135 Nov 18, 2019 0.188 Nov 18, 2019 0.155 Jan 9, 2020 0.234 Jan 9, 2020 0.254 Jan 9, 2020 0.188 Apr 1, 2020 0.33 Apr 1, 2020 0.318 Apr 1, 2020 0.242 Apr 6, 2020 0.372 Apr 6, 2020 0.334 Apr 6, 2020 0.253 Apr 16, 2020 0.287 Apr 16, 2020 0.274 Apr 16, 2020 0.237 Apr 23, 2020 0.28 Apr 23, 2020 0.275 Apr 23, 2020 0.252 Apr 28, 2020 0.278 Apr 28, 2020 0.252 Apr 28, 2020 0.203 May 1, 2020 0.248 May 1, 2020 0.2 May 18, 2020 0.203 May 21, 2020 0.201 May 21, 2020 0.2 May 18, 2020 0.129 Jun 7, 2020 0.169 Jun 7, 2020 0.169 Jun 15, 2020 0.162 Jun17, 2020 0.148 Jun 17, 2020 0.	Jul 1, 2019	0.155	Jul 1, 2019	0.156	Jul 1, 2019	0.179
Nov 18, 20190.135Nov 18, 20190.188Nov 18, 20190.155Jan 9, 20200.234Jan 9, 20200.254Jan 9, 20200.242Apr 1, 20200.33Apr 1, 20200.318Apr 1, 20200.242Apr 6, 20200.372Apr 6, 20200.334Apr 6, 20200.253Apr 16, 20200.287Apr 16, 20200.274Apr 16, 20200.237Apr 23, 20200.28Apr 23, 20200.275Apr 23, 20200.052Apr 28, 20200.278Apr 28, 20200.252Apr 28, 20200.223May 1, 20200.248May 1, 20200.236May 1, 20200.209May 18, 20200.201May 18, 20200.2May 18, 20200.203May 21, 20200.215May 21, 20200.2May 21, 20200.129Jun 7, 20200.169Jun 7, 20200.169Jun 7, 20200.169Jun15, 20200.141Jun 15, 20200.163Jun 17, 20200.162Jun17, 20200.148Jun 17, 20200.163Jun 17, 20200.137Aug 24, 20200.14Aug 24, 20200.136Aug 24, 20200.137	Jul 16, 2019	0.108	Jul 16, 2019	0.135	Jul 16, 2019	0.145
Jan 9, 20200.234Jan 9, 20200.254Jan 9, 20200.188Apr 1, 20200.33Apr 1, 20200.318Apr 1, 20200.242Apr 6, 20200.372Apr 6, 20200.334Apr 6, 20200.253Apr 16, 20200.287Apr 16, 20200.274Apr 16, 20200.237Apr 23, 20200.28Apr 23, 20200.275Apr 23, 20200.052Apr 28, 20200.278Apr 28, 20200.252Apr 28, 20200.223May 1, 20200.248May 1, 20200.236May 1, 20200.209May 18, 20200.201May 18, 20200.2May 18, 20200.203May 21, 20200.215May 21, 20200.169Jun 7, 20200.183Jun 7, 20200.169Jun 7, 20200.169Jun 7, 20200.162Jun17, 20200.148Jun 17, 20200.163Jun 17, 20200.17Aug 24, 20200.136Aug 24, 20200.137Aug 26, 20200.11Aug 26, 20200.141Aug 26, 20200.137	Sep 16, 2019	0.129	Sep 16, 2019	0.174	Sep 16, 2019	0.077
Apr 1, 20200.33Apr 1, 20200.318Apr 1, 20200.242Apr 6, 20200.372Apr 6, 20200.334Apr 6, 20200.253Apr 16, 20200.287Apr 16, 20200.274Apr 16, 20200.237Apr 23, 20200.28Apr 23, 20200.275Apr 23, 20200.052Apr 28, 20200.278Apr 28, 20200.252Apr 28, 20200.223May 1, 20200.248May 1, 20200.236May 18, 20200.209May 18, 20200.201May 18, 20200.2May 18, 20200.203May 21, 20200.215May 21, 20200.2May 21, 20200.129Jun 7, 20200.169Jun 7, 20200.169Jun 7, 20200.183Jun15, 20200.171Jun 15, 20200.164Jun 15, 20200.162Jun17, 20200.148Jun 17, 20200.163Jun 17, 20200.17Aug 24, 20200.14Aug 24, 20200.136Aug 24, 20200.137Aug 26, 20200.11Aug 26, 20200.141Aug 26, 20200.137	Nov 18, 2019	0.135	Nov 18, 2019	0.188	Nov 18, 2019	0.155
Apr 6, 20200.372Apr 6, 20200.334Apr 6, 20200.253Apr 16, 20200.287Apr 16, 20200.274Apr 16, 20200.237Apr 23, 20200.28Apr 23, 20200.275Apr 23, 20200.052Apr 28, 20200.278Apr 28, 20200.252Apr 28, 20200.223May 1, 20200.248May 1, 20200.236May 1, 20200.209May 18, 20200.201May 18, 20200.2May 18, 20200.203May 21, 20200.215May 21, 20200.2May 21, 20200.129Jun 7, 20200.169Jun 7, 20200.169Jun 7, 20200.183Jun15, 20200.171Jun 15, 20200.164Jun 15, 20200.162Jun17, 20200.148Jun 17, 20200.163Jun 17, 20200.17Aug 24, 20200.14Aug 24, 20200.136Aug 24, 20200.137Aug 26, 20200.11Aug 26, 20200.141Aug 26, 20200.137	Jan 9, 2020	0.234	Jan 9, 2020	0.254	Jan 9, 2020	0.188
Apr 16, 20200.287Apr 16, 20200.274Apr 16, 20200.237Apr 23, 20200.28Apr 23, 20200.275Apr 23, 20200.052Apr 28, 20200.278Apr 28, 20200.252Apr 28, 20200.223May 1, 20200.248May 1, 20200.236May 1, 20200.209May 18, 20200.201May 18, 20200.2May 18, 20200.203May 21, 20200.215May 21, 20200.2May 21, 20200.129Jun 7, 20200.169Jun 7, 20200.169Jun 7, 20200.183Jun15, 20200.148Jun 17, 20200.163Jun 15, 20200.17Aug 24, 20200.14Aug 24, 20200.136Aug 24, 20200.137Aug 26, 20200.11Aug 26, 20200.141Aug 26, 20200.143	Apr 1, 2020	0.33	Apr 1, 2020	0.318	Apr 1, 2020	0.242
Apr 23, 20200.28Apr 23, 20200.275Apr 23, 20200.052Apr 28, 20200.278Apr 28, 20200.252Apr 28, 20200.223May 1, 20200.248May 1, 20200.236May 1, 20200.209May 18, 20200.201May 18, 20200.2May 18, 20200.203May 21, 20200.215May 21, 20200.2May 21, 20200.129Jun 7, 20200.169Jun 7, 20200.169Jun 7, 20200.183Jun15, 20200.171Jun 15, 20200.164Jun 15, 20200.162Jun17, 20200.148Jun 17, 20200.163Jun 17, 20200.17Aug 24, 20200.14Aug 24, 20200.136Aug 24, 20200.137Aug 26, 20200.11Aug 26, 20200.141Aug 26, 20200.137	Apr 6, 2020	0.372	Apr 6, 2020	0.334	Apr 6, 2020	0.253
Apr 28, 20200.278Apr 28, 20200.252Apr 28, 20200.223May 1, 20200.248May 1, 20200.236May 1, 20200.209May 18, 20200.201May 18, 20200.2May 18, 20200.203May 21, 20200.215May 21, 20200.2May 21, 20200.129Jun 7, 20200.169Jun 7, 20200.169Jun 7, 20200.183Jun15, 20200.171Jun 15, 20200.164Jun 15, 20200.162Jun17, 20200.148Jun 17, 20200.163Jun 17, 20200.17Aug 24, 20200.14Aug 24, 20200.136Aug 24, 20200.137Aug 26, 20200.11Aug 26, 20200.141Aug 26, 20200.137	Apr 16, 2020	0.287	Apr 16, 2020	0.274	Apr 16, 2020	0.237
May 1, 20200.248May 1, 20200.236May 1, 20200.209May 18, 20200.201May 18, 20200.2May 18, 20200.203May 21, 20200.215May 21, 20200.2May 21, 20200.129Jun 7, 20200.169Jun 7, 20200.169Jun 7, 20200.183Jun15, 20200.171Jun 15, 20200.164Jun 15, 20200.162Jun17, 20200.148Jun 17, 20200.163Jun 17, 20200.17Aug 24, 20200.14Aug 24, 20200.136Aug 24, 20200.137Aug 26, 20200.11Aug 26, 20200.141Aug 26, 20200.137	Apr 23, 2020	0.28	Apr 23, 2020	0.275	Apr 23, 2020	0.052
May 18, 20200.201May 18, 20200.2May 18, 20200.203May 21, 20200.215May 21, 20200.2May 21, 20200.129Jun 7, 20200.169Jun 7, 20200.169Jun 7, 20200.183Jun15, 20200.171Jun 15, 20200.164Jun 15, 20200.162Jun17, 20200.148Jun 17, 20200.163Jun 17, 20200.17Aug 24, 20200.14Aug 24, 20200.136Aug 24, 20200.137Aug 26, 20200.11Aug 26, 20200.141Aug 26, 20200.137	Apr 28, 2020	0.278	Apr 28, 2020	0.252	Apr 28, 2020	0.223
May 21, 20200.215May 21, 20200.2May 21, 20200.129Jun 7, 20200.169Jun 7, 20200.169Jun 7, 20200.183Jun 15, 20200.171Jun 15, 20200.164Jun 15, 20200.162Jun 17, 20200.148Jun 17, 20200.163Jun 17, 20200.17Aug 24, 20200.14Aug 24, 20200.136Aug 24, 20200.137Aug 26, 20200.11Aug 26, 20200.141Aug 26, 20200.137	May 1, 2020	0.248	May 1, 2020	0.236	May 1, 2020	0.209
Jun 7, 20200.169Jun 7, 20200.169Jun 7, 20200.183Jun 15, 20200.171Jun 15, 20200.164Jun 15, 20200.162Jun 17, 20200.148Jun 17, 20200.163Jun 17, 20200.17Aug 24, 20200.14Aug 24, 20200.136Aug 24, 20200.137Aug 26, 20200.11Aug 26, 20200.141Aug 26, 20200.137	May 18, 2020	0.201	May 18, 2020	0.2	May 18, 2020	0.203
Jun15, 20200.171Jun 15, 20200.164Jun 15, 20200.162Jun17, 20200.148Jun 17, 20200.163Jun 17, 20200.17Aug 24, 20200.14Aug 24, 20200.136Aug 24, 20200.137Aug 26, 20200.11Aug 26, 20200.141Aug 26, 20200.137	May 21, 2020	0.215	May 21, 2020	0.2	May 21, 2020	0.129
Jun17, 20200.148Jun 17, 20200.163Jun 17, 20200.17Aug 24, 20200.14Aug 24, 20200.136Aug 24, 20200.137Aug 26, 20200.11Aug 26, 20200.141Aug 26, 20200.137	Jun 7, 2020	0.169	Jun 7, 2020	0.169	Jun 7, 2020	0.183
Aug 24, 2020 0.14 Aug 24, 2020 0.136 Aug 24, 2020 0.137 Aug 26, 2020 0.11 Aug 26, 2020 0.141 Aug 26, 2020 0.137	Jun15, 2020	0.171	Jun 15, 2020	0.164	Jun 15, 2020	0.162
Aug 26, 2020 0.11 Aug 26, 2020 0.141 Aug 26, 2020 0.137	Jun17, 2020	0.148	Jun 17, 2020	0.163	Jun 17, 2020	0.17
	Aug 24, 2020	0.14	Aug 24, 2020	0.136	Aug 24, 2020	0.137
Sep 5, 2020 0.119 Sep 5, 2020 0.136 Sep 5, 2020 0.143	Aug 26, 2020	0.11	Aug 26, 2020	0.141	Aug 26, 2020	0.137
	Sep 5, 2020	0.119	Sep 5, 2020	0.136	Sep 5, 2020	0.143

Oct 8, 2020	0.117	Oct 8, 2020	0.08	Oct 8, 2020	0.13
Nov 22, 2020	0.137	Nov 22, 2020	0.128	Nov 22, 2020	0.133
Dec 12, 2020	0.186	Dec 12, 2020	0.174	Dec 12, 2020	0.126
Feb 25, 2021	0.301	Feb 25, 2021	0.33	Feb 25, 2021	0.205
Apr 16, 2021	0.331	Apr 16, 2021	0.321	Apr 16, 2021	0.232
Apr 18, 2021	0.347	Apr 18, 2021	0.314	Apr 18, 2021	0.247
Apr 21, 2021	0.383	Apr 21, 2021	0.304	Apr 21, 2021	0.254
Apr 26, 2021	0.365	Apr 26, 2021	0.317	Apr 26, 2021	0.244
Apr 28, 2021	0.211	Apr 28, 2021	0.133	Apr 28, 2021	0.19
May 1, 2021	0.265	May 1, 2021	0.256	May 1, 2021	0.236
May 3, 2021	0.312	May 3, 2021	0.276	May 3, 2021	0.219
May 6, 2021	0.237	May 6, 2021	0.241	May 6, 2021	0.195
May 8, 2021	0.288	May 8, 2021	0.281	May 8, 2021	0.163
May 11, 2021	0.27	May 11, 2021	0.248	May 11, 2021	0.222
May 16, 2021	0.282	May 16, 2021	0.237	May 16, 2021	0.203
May 18, 2021	0.258	May 18, 2021	0.237	May 18, 2021	0.2
May 21, 2021	0.254	May 21, 2021	0.209	May 21, 2021	0.224
May 28, 2021	0.084	May 28, 2021	0.081	May 28, 2021	0.2
Jun 2, 2021	0.187	Jun 2, 2021	0.203	Jun 2, 2021	0.199
Jun 5, 2021	0.193	Jun 5, 2021	0.103	Jun 5, 2021	0.175
Jun 7, 2021	0.159	Jun 7, 2021	0.194	Jun 7, 2021	0.184
Jun10, 2021	0.144	Jun 10, 2021	0.148	Jun 10, 2021	0.166
Jun12, 2021	0.194	Jun 12, 2021	0.178	Jun 12, 2021	0.181
Jun15, 2021	0.163	Jun 15, 2021	0.176	Jun 15, 2021	0.167
Jun17, 2021	0.079	Jun 17, 2021	0.126	Jun 17, 2021	0.157
Jun20, 2021	0.157	Jun 20, 2021	0.167	Jun 20, 2021	0.174
Jun22, 2021	0.169	Jun 22, 2021	0.166	Jun 22, 2021	0.151
Jun25, 2021	0.156	Jun 25, 2021	0.159	Jun 25, 2021	0.153
Jun30, 2021	0.154	Jun 30, 2021	0.169	Jun 30, 2021	0.167
Jul 2, 2021	0.175	Jul 2, 2021	0.168	Jul 2, 2021	0.168
Jul 5, 2021	0.152	Jul 5, 2021	0.162	Jul 5, 2021	0.161

Jul 7, 2021	0.15	Jul 7, 2021	0.151	Jul 7, 2021	0.147
Jul 10, 2021	0.144	Jul 10, 2021	0.155	Jul 10, 2021	0.159
Jul 12, 2021	0.137	Jul 12, 2021	0.158	Jul 12, 2021	0.139
Jul 15, 2021	0.134	Jul 15, 2021	0.15	Jul 15, 2021	0.133
Jul 17, 2021	0.157	Jul 17, 2021	0.163	Jul 17, 2021	0.154
Jul 20, 2021	0.143	Jul 20, 2021	0.142	Jul 20, 2021	0.136
Jul 22, 2021	0.136	Jul 22, 2021	0.139	Jul 22, 2021	0.15
Jul 27, 2021	0.149	Jul 27, 2021	0.138	Jul 27, 2021	0.145
Jul 30, 2021	0.131	Jul 30, 2021	0.126	Jul 30, 2021	0.095
Aug 6, 2021	0.169	Aug 6, 2021	0.162	Aug 6, 2021	0.139
Aug 9, 2021	0.15	Aug 9, 2021	0.16	Aug 9, 2021	0.145
Aug 11, 2021	0.12	Aug 11, 2021	0.16	Aug 11, 2021	0.138
Aug 14, 2021	0.144	Aug 14, 2021	0.164	Aug 14, 2021	0.144
Aug 16, 2021	0.15	Aug 16, 2021	0.162	Aug 16, 2021	0.135
Aug 19, 2021	0.129	Aug 19, 2021	0.158	Aug 19, 2021	0.154
Aug 21, 2021	0.136	Aug 21, 2021	0.15	Aug 21, 2021	0.145
Aug 24, 2021	0.089	Aug 24, 2021	0.154	Aug 24, 2021	0.132
Aug 26, 2021	0.116	Aug 26, 2021	0.149	Aug 26, 2021	0.15
Aug 29, 2021	0.003	Aug 29, 2021	0.154	Aug 29, 2021	0.132
Aug 31, 2021	0.116	Aug 31, 2021	0.15	Aug 31, 2021	0.141
Sep 3, 2021	0.109	Sep 3, 2021	0.141	Sep 3, 2021	0.13
Sep 8, 2021	0.125	Sep 8, 2021	0.16	Sep 8, 2021	0.111
Sep 10, 2021	0.124	Sep 10, 2021	0.152	Sep 10, 2021	0.139
Sep 18, 2021	0.129	Sep 18, 2021	0.156	Sep 18, 2021	0.138
Sep 20, 2021	0.106	Sep 20, 2021	0.147	Sep 20, 2021	0.14
Sep 28, 2021	0.156	Sep 28, 2021	0.148	Sep 28, 2021	0.149
Sep 30, 2021	0.119	Sep 30, 2021	0.146	Sep 30, 2021	0.134
Oct 3, 2021	0.133	Oct 3, 2021	0.147	Oct 3, 2021	0.139
Oct 13, 2021	0.143	Oct 13, 2021	0.158	Oct 13, 2021	0.141
Oct 15, 2021	0.127	Oct 15, 2021	0.159	Oct 15, 2021	0.142
Oct 18, 2021	0.174	Oct 18, 2021	0.174	Oct 18, 2021	0.131

Oct 20, 2021	0.144	Oct 20, 2021	0.165	Oct 20, 2021	0.135
Oct 23, 2021	0.167	Oct 23, 2021	0.159	Oct 23, 2021	0.131
Oct 25, 2021	0.122	Oct 25, 2021	0.159	Oct 25, 2021	0.14
Oct 30, 2021	0.126	Oct 30, 2021	0.163	Oct 30, 2021	0.127
Nov 7, 2021	0.099	Nov 7, 2021	0.143	Nov 7, 2021	0.11
Nov 22, 2021	0.056	Nov 22, 2021	0.156	Nov 22, 2021	0.066
Dec 12, 2021	0.146	Dec 12, 2021	0.206	Dec 12, 2021	0.178
Jan 1, 2022	0.342	Jan 1, 2022	0.163	Jan 1, 2022	0.17
Jan 3, 2022	0.134	Jan 3, 2022	0.289	Jan 3, 2022	0.191
Feb 5, 2022	0.135	Feb 5, 2022	0.066	Feb 5, 2022	0.121
Feb 20, 2022	0.152	Feb 20, 2022	0.214	Feb 20, 2022	0.058
Mar 2, 2022	0.128	Mar 2, 2022	0.226	Mar 2, 2022	0.079
Mar 29, 2022	0.192	Mar 29, 2022	0.266	Mar 29, 2022	0.157
Apr 6, 2022	0.116	Apr 6, 2022	0.188	Apr 6, 2022	0.152
Apr 11, 2022	0.05	Apr 11, 2022	0.263	Apr 11, 2022	0.152
Apr 13, 2022	0.131	Apr 13, 2022	0.237	Apr 13, 2022	0.149
Apr 16, 2022	0.142	Apr 16, 2022	0.241	Apr 16, 2022	0.148
Apr 18, 2022	0.13	Apr 18, 2022	0.229	Apr 18, 2022	0.14
Apr 21, 2022	0.113	Apr 21, 2022	0.213	Apr 21, 2022	0.132
Apr 23, 2022	0.129	Apr 23, 2022	0.193	Apr 23, 2022	0.129
Apr 26, 2022	0.156	Apr 26, 2022	0.198	Apr 26, 2022	0.134
Apr 28, 2022	0.111	Apr 28, 2022	0.19	Apr 28, 2022	0.128
May 1, 2022	0.14	May 1, 2022	0.178	May 1, 2022	0.126
May 3, 2022	0.107	May 3, 2022	0.175	May 3, 2022	0.119
May 6, 2022	0.151	May 6, 2022	0.178	May 6, 2022	0.129
May 11, 2022	0.117	May 11, 2022	0.162	May 11, 2022	0.116
May 13, 2022	0.118	May 13, 2022	0.162	May 13, 2022	0.112
May 16, 2022	0.121	May 16, 2022	0.163	May 16, 2022	0.111
May 18, 2022	0.105	May 18, 2022	0.157	May 18, 2022	0.111
May 21, 2022	0.11	May 21, 2022	0.157	May 21, 2022	0.111
May 23, 2022	0.094	May 23, 2022	0.156	May 23, 2022	0.109

May 26, 2022	0.064	May 26, 2022	0.038	May 26, 2022	0.059
May 28, 2022	0.108	May 28, 2022	0.147	May 28, 2022	0.104
May 31, 2022	0.072	May 31, 2022	0.138	May 31, 2022	0.031
Jun 2, 2022	0.058	Jun 2, 2022	0.097	Jun 2, 2022	0.072
Jun 7, 2022	0.073	Jun 7, 2022	0.148	Jun 7, 2022	0.1
Jun10, 2022	0.074	Jun 10, 2022	0.134	Jun 10, 2022	80.0
Jun12, 2022	0.086	Jun 12, 2022	0.144	Jun 12, 2022	0.093
Jun15, 2022	0.104	Jun 15, 2022	0.134	Jun 15, 2022	0.099
Jun17, 2022	0.076	Jun 17, 2022	0.137	Jun 17, 2022	0.097
Jun20, 2022	0.086	Jun 20, 2022	0.13	Jun 20, 2022	0.086
Jun 22, 2022	0.07	Jun 22, 2022	0.133	Jun 22, 2022	0.089
Jun25, 2022	0.089	Jun 25, 2022	0.132	Jun 25, 2022	0.086
Jun 27, 2022	0.07	Jun 27, 2022	0.126	Jun 27, 2022	0.085
Jun30, 2022	0.095	Jun 30, 2022	0.125	Jun 30, 2022	0.086
Jul 2, 2022	0.06	Jul 2, 2022	0.099	Jul 2, 2022	0.087
Jul 5, 2022	0.091	Jul 5, 2022	0.116	Jul 5, 2022	0.084
Jul 7, 2022	0.091	Jul 7, 2022	0.128	Jul 7, 2022	0.088
Jul 10, 2022	0.067	Jul 10, 2022	0.107	Jul 10, 2022	0.082
Jul 12, 2022	0.057	Jul 12, 2022	0.122	Jul 12, 2022	0.084
Jul 17, 2022	0.079	Jul 17, 2022	0.118	Jul 17, 2022	0.085
Jul 20, 2022	0.06	Jul 20, 2022	0.098	Jul 20, 2022	0.084
Jul 22, 2022	0.079	Jul 22, 2022	0.128	Jul 22, 2022	0.086
Jul 25, 2022	0.1	Jul 25, 2022	0.114	Jul 25, 2022	0.083
Jul 27, 2022	0.071	Jul 27, 2022	0.127	Jul 27, 2022	0.097
Jul 30, 2022	0.068	Jul 30, 2022	0.114	Jul 30, 2022	0.087
Aug 1, 2022	0.09	Aug 1, 2022	0.119	Aug 1, 2022	0.081
Aug 4, 2022	0.075	Aug 4, 2022	0.132	Aug 4, 2022	0.09
Aug 6, 2022	0.07	Aug 6, 2022	0.122	Aug 6, 2022	0.081
Aug 9, 2022	0.05	Aug 9, 2022	0.12	Aug 9, 2022	0.089
Aug 11, 2022	0.068	Aug 11, 2022	0.122	Aug 11, 2022	0.092
Aug 14, 2022	0.082	Aug 14, 2022	0.117	Aug 14, 2022	0.081

Aug 16, 2022	0.053	Aug 16, 2022	0.123	Aug 16, 2022	0.085
Aug 19, 2022	0.004	Aug 19, 2022	0.073	Aug 19, 2022	0.093
Aug 21, 2022	0.072	Aug 21, 2022	0.118	Aug 21, 2022	0.092
Aug 24, 2022	0.08	Aug 24, 2022	0.115	Aug 24, 2022	0.092
Aug 26, 2022	0.046	Aug 26, 2022	0.112	Aug 26, 2022	0.087
Aug 29, 2022	0.065	Aug 29, 2022	0.107	Aug 29, 2022	0.083
Aug 31, 2022	0.06	Aug 31, 2022	0.115	Aug 31, 2022	0.084
Sep 8, 2022	0.055	Sep 8, 2022	0.118	Sep 8, 2022	0.076
Sep 13, 2022	0.046	Sep 13, 2022	0.109	Sep 13, 2022	0.159
Sep 15, 2022	0.051	Sep 15, 2022	0.114	Sep 15, 2022	0.088
Sep 18, 2022	0.064	Sep 18, 2022	0.109	Sep 18, 2022	0.082
Sep 20, 2022	0.062	Sep 20, 2022	0.114	Sep 20, 2022	0.088
Sep 23, 2022	0.067	Sep 23, 2022	0.111	Sep 23, 2022	0.085
Sep 25, 2022	0.044	Sep 25, 2022	0.118	Sep 25, 2022	0.051
Sep 28, 2022	0.079	Sep 28, 2022	0.116	Sep 28, 2022	0.092
Sep 30, 2022	0.062	Sep 30, 2022	0.096	Sep 30, 2022	0.094
Oct 5, 2022	0.067	Oct 5, 2022	0.128	Oct 5, 2022	0.087
Oct 8, 2022	0.047	Oct 8, 2022	0.118	Oct 8, 2022	880.0
Oct 10, 2022	0.061	Oct 10, 2022	0.118	Oct 10, 2022	0.091
Oct 13, 2022	0.067	Oct 13, 2022	0.117	Oct 13, 2022	0.083
Oct 20, 2022	0.069	Oct 20, 2022	0.115	Oct 20, 2022	0.091
Oct 23, 2022	0.07	Oct 23, 2022	0.102	Oct 23, 2022	0.069
Oct 25, 2022	0.054	Oct 25, 2022	0.109	Oct 25, 2022	0.093
Oct 28, 2022	0.068	Oct 28, 2022	0.111	Oct 28, 2022	0.079
Oct 30, 2022	0.052	Oct 30, 2022	0.106	Oct 30, 2022	0.086
Nov 2, 2022	0.063	Nov 2, 2022	0.108	Nov 2, 2022	0.091
Nov 4, 2022	0.061	Nov 4, 2022	0.112	Nov 4, 2022	0.085
Nov 7, 2022	0.058	Nov 7, 2022	0.106	Nov 7, 2022	0.087
Nov 9, 2022	0.061	Nov 9, 2022	0.103	Nov 9, 2022	0.091
Nov 12, 2022	0.059	Nov 12, 2022	0.099	Nov 12, 2022	0.078
Nov 14, 2022	0.061	Nov 14, 2022	0.11	Nov 14, 2022	0.09

Nov 17, 2022	0.063	Nov 17, 2022	0.105	Nov 17, 2022	0.079
Dec 2, 2022	0.081	Dec 2, 2022	0.112	Dec 2, 2022	0.094
Dec 24, 2022	0.072	Dec 24, 2022	0.148	Dec 24, 2022	0.103
Dec 27, 2022	0.1	Dec 27, 2022	0.117	Dec 27, 2022	0.082
Jan 11, 2023	0.121	Jan 11, 2023	0.193	Jan 11, 2023	0.059
Jan 13, 2023	0.09	Jan 13, 2023	0.192	Jan 13, 2023	0
Jan 16, 2023	0.086	Jan 16, 2023	0.177	Jan 16, 2023	0.109
Jan 23, 2023	0.084	Jan 23, 2023	0.182	Jan 23, 2023	0.071
Feb 17, 2023	0.085	Feb 17, 2023	0.216	Feb 17, 2023	0.048
Feb 25, 2023	0.111	Feb 25, 2023	0.22	Feb 25, 2023	0.135
Mar 2, 2023	0.118	Mar 2, 2023	0.221	Mar 2, 2023	0.133
Mar 4, 2023	0.125	Mar 4, 2023	0.204	Mar 4, 2023	0.13
Apr 6, 2023	0.122	Apr 6, 2023	0.202	Apr 6, 2023	0.106
Apr 18, 2023	0.097	Apr 18, 2023	0.166	Apr 18, 2023	0.124
Apr 21, 2023	0.114	Apr 21, 2023	0.165	Apr 21, 2023	0.129
Apr 23, 2023	0.114	Apr 23, 2023	0.163	Apr 23, 2023	0.124
Apr 26, 2023	0.101	Apr 26, 2023	0.161	Apr 26, 2023	0.122
Apr 28, 2023	0.086	Apr 28, 2023	0.155	Apr 28, 2023	0.114
May 1, 2023	0.087	May 1, 2023	0.146	May 1, 2023	0.122
May 3, 2023	0.091	May 3, 2023	0.149	May 3, 2023	0.109
May 11, 2023	0.072	May 11, 2023	0.146	May 11, 2023	0.098
May 13, 2023	0.094	May 13, 2023	0.151	May 13, 2023	0.112
May 16, 2023	0.044	May 16, 2023	0.15	May 16, 2023	0.103
May 18, 2023	0.059	May 18, 2023	0.155	May 18, 2023	0.103
May 21, 2023	0.041	May 21, 2023	0.163	May 21, 2023	0.106
May 23, 2023	0.025	May 23, 2023	0.157	May 23, 2023	0.092
May 26, 2023	0.046	May 26, 2023	0.14	May 26, 2023	0.09
May 28, 2023	0.054	May 28, 2023	0.146	May 28, 2023	0.097
May 31, 2023	0.068	May 31, 2023	0.154	May 31, 2023	0.107
Jun 2, 2023	0.057	Jun 2, 2023	0.157	Jun 2, 2023	0.095
Jun 5, 2023	0.056	Jun 5, 2023	0.144	Jun 5, 2023	0.082

Jun 7, 2023	0.06	Jun 7, 2023	0.084	Jun 7, 2023	0.086
Jun 10, 2023	0.07	Jun 10, 2023	0.074	Jun 10, 2023	0.102
Jun12, 2023	0.049	Jun 12, 2023	0.067	Jun 12, 2023	0.087
Jun15, 2023	0.061	Jun 15, 2023	0.073	Jun 15, 2023	0.09
Jun17, 2023	0.046	Jun 17, 2023	0.074	Jun 17, 2023	0.084
Jun20, 2023	0.033	Jun 20, 2023	0.07	Jun 20, 2023	0.088
Jun22, 2023	0.018	Jun 22, 2023	0.077	Jun 22, 2023	0.085
Jun25, 2023	0.043	Jun 25, 2023	0.062	Jun 25, 2023	0.08
Jun27, 2023	0.042	Jun 27, 2023	0.075	Jun 27, 2023	0.086
Jun30, 2023	0.058	Jun 30, 2023	0.068	Jun 30, 2023	0.091
Jul 2, 2023	0.055	Jul 2, 2023	0.071	Jul 2, 2023	0.081
Jul 5, 2023	0.051	Jul 5, 2023	0.063	Jul 5, 2023	0.08
Jul 7, 2023	0.048	Jul 7, 2023	0.067	Jul 7, 2023	0.082
Jul 10, 2023	0.045	Jul 10, 2023	0.064	Jul 10, 2023	0.076
Jul 12, 2023	0.051	Jul 12, 2023	0.063	Jul 12, 2023	0.084
Jul 15, 2023	0.035	Jul 15, 2023	0.065	Jul 15, 2023	0.081
Jul 17, 2023	0.042	Jul 17, 2023	0.063	Jul 17, 2023	0.074
Jul 20, 2023	0.035	Jul 20, 2023	0.068	Jul 20, 2023	0.09
Jul 22, 2023	0.003	Jul 22, 2023	0.066	Jul 22, 2023	0.076

Figura 57: Gráfico de las coordenadas: lon: -68.23455 y lat: -16.54678.

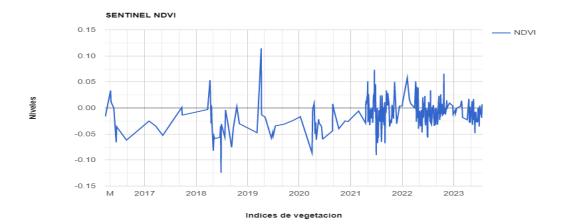
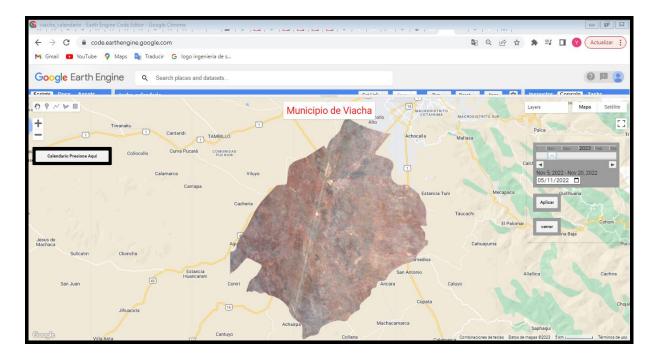


Figura 58: Gráfico de las coordenadas: lon: -68.20875 y lat: -16.43356.


Figura 59: Gráfico de las coordenadas: Ion: -68.22753 y lat: -16.57281.

3.5.3. Obtención de imágenes satelitales

Por medio del calendario se pueden obtener imágenes satelitales con un lapso de tiempo de 15 días los cuales se muestran siempre y cuando se tengan captadas imágenes despejadas de nubes al 10%, al aplicar la fecha de la cual se requiere la capa se cargará en el visualizador.

Figura 60: Modelo de imágenes satelitales.

3.5.4. Implementación de algoritmos

> Obtención de la capa del Municipio

```
▼ Imports (3 entries) 🗐
     var table: Table users/YhennyValerianoTesis/municipio_viacha
var sentinel 2: ImageCollection "Sentinel-2 MSI: MultiSpectral Instrument, Level-1C"
■ i var imageVisParam: B4, B3 and B2 from 1265 to 4191
 1 * var rgb = {
 2
       min:0,
 3
       max:3000,
       bands:['B4','B3','B2'],
 4
5 }
 6
    var viacha_boundary = ee.FeatureCollection(table).style({color:'black', width: 3, fillColor:'000000000'});
     var roi = ee.Feature(viacha_boundary).geometry();
    var viacha_sentinel = sentinel_2.filter(ee.Filter.bounds(roi))
    .filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE',10));
var viacha_sentinel_mediana = viacha_sentinel.median();
     var viacha_sentinel_clip = viacha_sentinel_mediana.clip(table);
     Map.addLayer(viacha_sentinel_clip, rgb);
12
     Map.centerObject(table,11);
13
```

Proceso del calendario

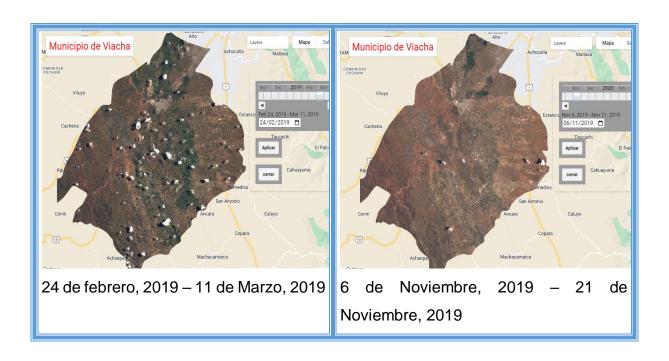
```
//CALENDARIO
//CALENDARIO
7 var dicobjetos = ui.DateSlider({start:'2015-01-01', end:ee.Date(Date.now()), period: 15,
onChange:function(){}, style: {backgroundColor: '9c9c9c', position: 'top-right'}});;
```

> Título de la capa

Botón CALENDARIO

> Botón APLICAR del panel calendario

> Botón CERRAR del panel calendario


```
28
29  // BOTON CERRAR
30  var boton1 = ui.Button({
31    label:'cerrar',
32  vonClick: function(p){
i 33    p= Map.remove(panel)
34    },
35    disabled: null,
i 36    style : {color:'black', backgroundColor: '9c9c9c', position: 'bottom-right'}})
37
```

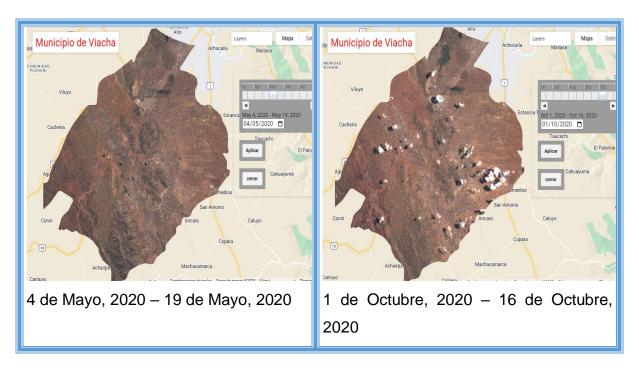
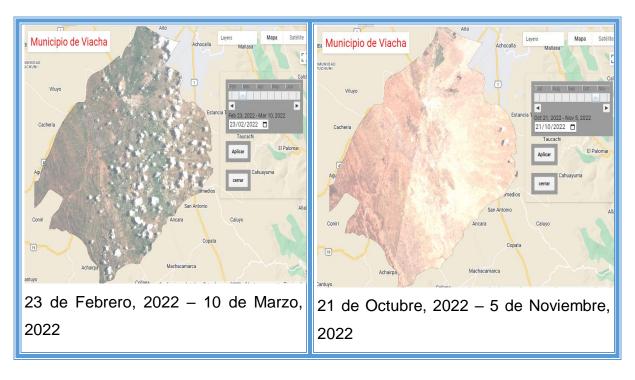
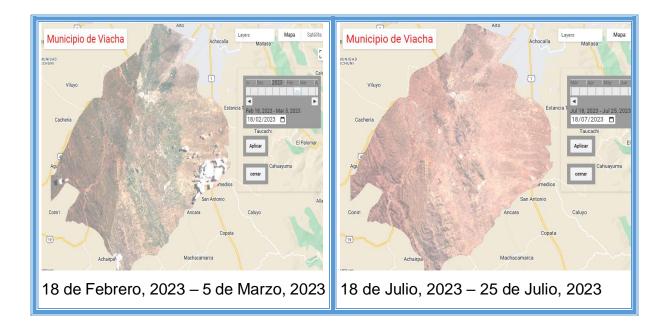

Mediante el anterior código se logra captar imágenes satelitales, en este caso se trabajó con Sentinel 2 la cual capta imágenes desde 2016 hasta la actualidad, como ejemplo se muestra imágenes que fueron captadas cada año.

Figura 61: Imágenes sentinel de cada año.





3.5.5. Proceso de publicación capas shp al GeoServer

Para crear capas de distintos puntos solamente se necesita las coordenadas la cual se plasma en un bloc de notas para seguidamente subirla a QGIS proporcionando un estilo SLD y guardando la nueva capa SHP, y por ultimo publicar en el Geoserver como se muestra en las siguientes imágenes.

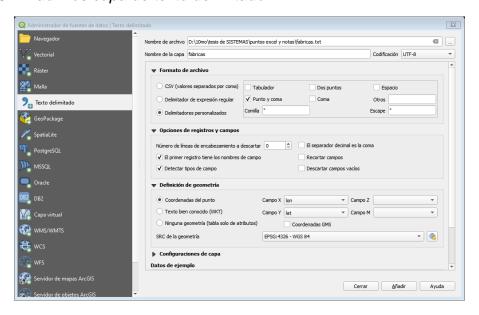

Datos de coordenadas

Figura 62: Coordenadas de fábricas en el municipio de Viacha.

Nota: Se plasma los datos de las coordenadas en un bloc de notas para luego subirlo a QGIS.

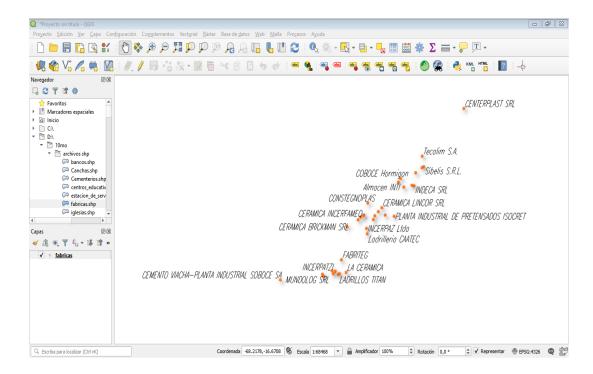
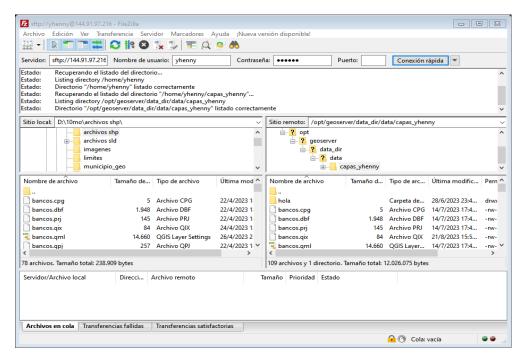

Proceso en QGIS

Figura 63: Añadimos capa de texto delimitado

Nota: Subimos el archivo como texto delimitado para que pueda reconocer el archivo.

Figura 64: Capa de texto delimitado



Nota: Se añade nueva capa de texto delimitado para que sea compatible con el archivo de bloc de notas.

A nuestra capa le añadimos un estilo SLD el cual se aplicará a nuestra capa subida al GeoServer.

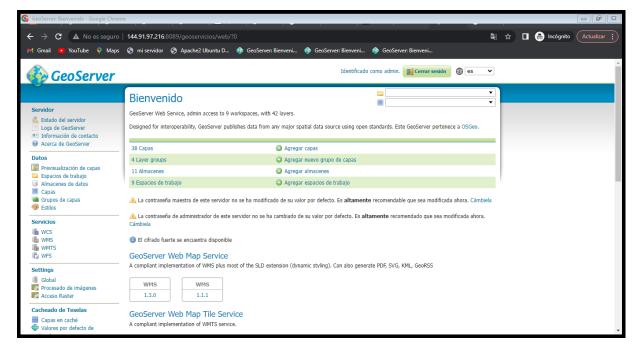

• Publicación de capas al GeoServer

Figura 65: Archivos en FileZilla.

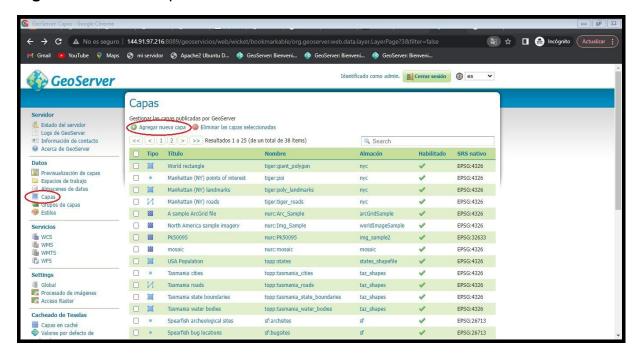

Nota: Se transfiere los archivos shp a FileZilla que está conectado al GeoServer.

Figura 66: Pantalla principal del geoserver.

157

Figura 67: Nueva Capa

Nota: Presionamos en Capa y seguidamente en Agregar nueva capa.

Figura 68: Seleccionamos el espacio de trabajo

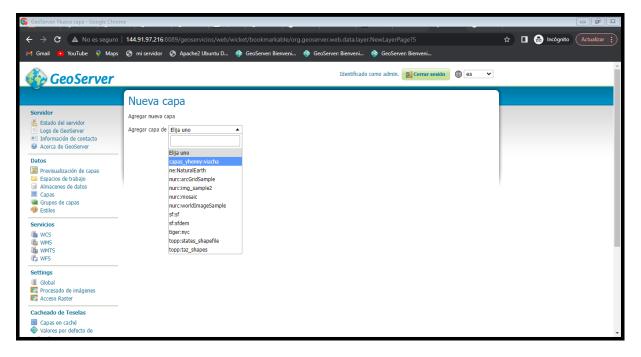
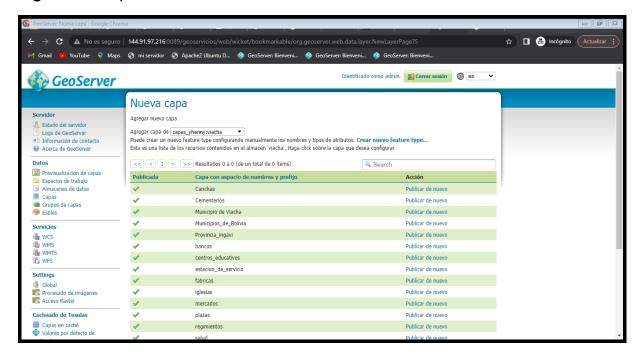
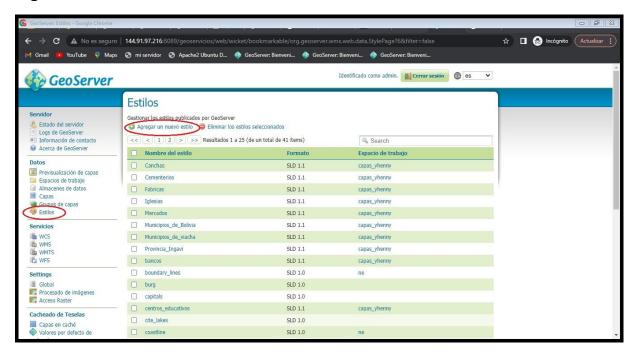
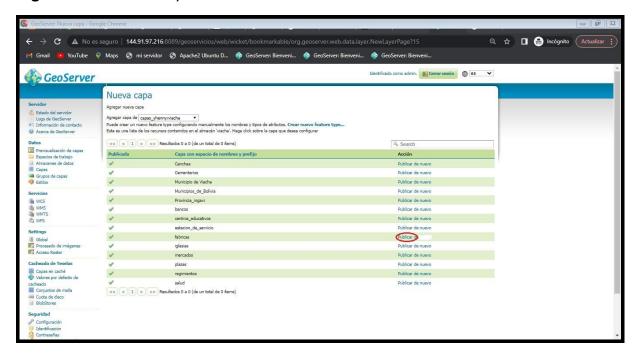




Figura 69: Capas subidas

Nota: Nos aparecen las capas que se subieron al servidor, una verificada subimos los estilos de cada capa.

Figura 70: Añadimos nuevo estilo

Nota: Presionamos en Estilos y seguidamente Agregar un nuevo estilo.


Figura 71: Nuevo estilo.

- Añadimos el nombre al estilo.
- Seleccionamos el espacio de trabajo.
- Elegimos el estilo por defecto.
- Seleccionamos el archivo.
- Presionamos en cargar.
- Presionamos en guardar.

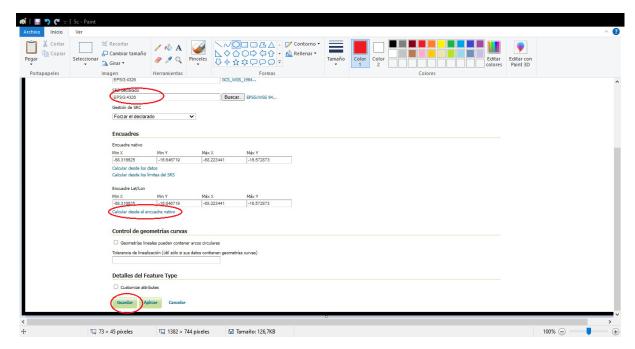

Ingresamos nuevamente a la pestaña de Capas, Agregar nueva capa, y seleccionamos el espacio de trabajo.

Figura 72: Publicar capa

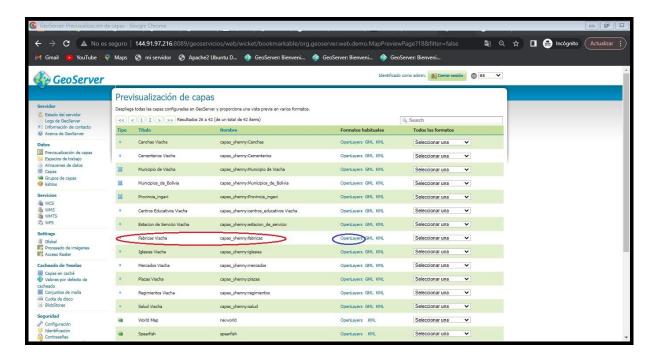

Nota: Presionamos en publicar la capa que queremos subir.

Figura 73: Capa publicada.

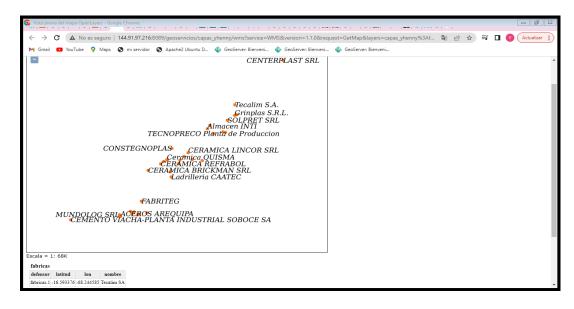
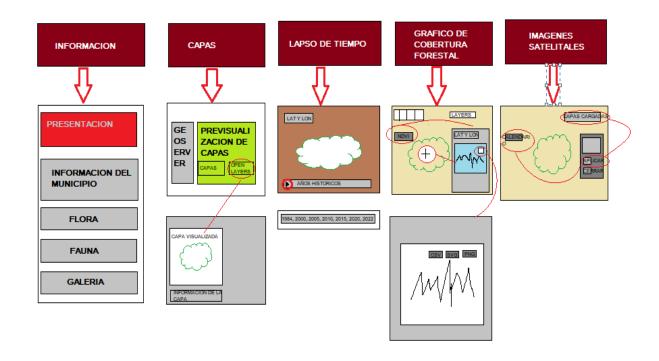

Nota: Seleccionamos el Srs (4326), presionamos en encuadres nativos y por ultimo presionamos en Guardar.

Figura 74: Capas subidas al Geoserver.

Nota: Presionamos en OpenLayers para visualizar la capa.


Figura 75: Visualización de capa de fábricas en Geoserver.

Nota: Al presionar en alguna fábrica en la parte inferior nos aparece las coordenadas.

3.6. ESTRUCTURA DEL FUNCIONAMIENTO DEL MODELO

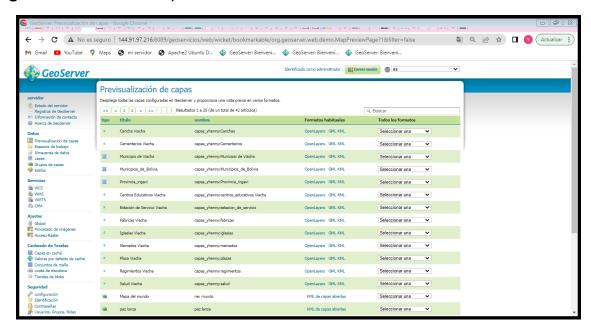
Figura 76: Funcionamiento del modelo

3.7. VISUALIZACIÓN DEL MODELO MODULO DE INFORMACION

Es la ventana principal donde se visualizan 4 opciones: capas, lapso de tiempo, grafico de cobertura forestal, imágenes satelitales que se visualizan de la siguiente manera:

Figura 77: Modulo de Información.

Mecapaca 2	29.6 km	Pucarani 33.5 km	Calamarca 34.5 km	
Colquencha	a 35.2 km	Palca 37.4 km	Tiahuanacu 42.5 km	
Sapahaqui	45.3 km	Batallas 46.7 km	Comanche 48.5 km	
Waldo Balli	vián 49.5 km			
FLORA				
llano 62%. La comunidades	is llanuras hi la producción	úmedas se caracterizan n de forraje como cebada	pecies de flora ya que presenta dos pisos ecológicos: ¿Zona relieve montañosa 38%. ¿Zona de jo por suelos con bastante fertilidad donde se desarrolla la actividad ganadera lechera y en y avena. Las lianuras secas presentan abundante vegetación compuesta por pastizales y mator arriedades de flora como ser:	n algunas
Thola			to andina muy utilizada como planta medicinal, como combustible ecológico o por lo que representa un gran potencial económico.	
Waraco	Es un cac	tus típico de los Andes, C	icurre en pastizales de altura requiere de mucha luz y algo de sol directo.	
Totora			orraje para los animales, para la fabricación de embarcaciones, casas y entre para prevenir a prevenir el cáncer de colon y el estrefilmiento.	
Yareta	permite d		nes altiplánicas, se adapta a distintos cambios climatológicos. Se dice que liviar problemas gastrointestinales, calmar dolores dentales y puede regular	
Ichu	Es un pa altiplánico		empleado para la construcción de casas, forraje de animales camélidos	V
			Market as a second	


Ichu	Es un pasto del altiplano andino empleado para la construcción de casas, forraje de animales camélidos altiplánicos.	Marine 1918	•
Pajonal	Son pastizales naturales que se encuentran en valles y montañas, son vitales para conservación del agua.		
Chi'lligua	Es una paja suave, con la cual se puede elaborar cesteria. Es característica del altiplano y crecen con preferencia en lugares húmedos y cercanos a los ríos. Indicador de las Iluvias y la producción.		
Kiswara	Es un árbol que puede llegar a medir 4 a 6 metros, pueden soportar temperaturas extremadamente bajas, sive para aliviar problemas hepáticos, de próstata, diabetes, cistitis, reumatismo, artritis, curar restifios y cicatrizar heridas.		V-2-
Suphu Thola	Es un arbusto resinoso, lignificado, erecto, ramoso, se usa como leña y arbusto medicinal	and a	
FAUNA La fauna en Boli	ivià es muy diversa y amplia ya que depende de las distintas zonas climaticas que se tiene en nuestro país		
Vicuña	Pertenece a la familia de camelidos habitan en la zona Altiplanica, su pelaje es una una de las mas finas en todo el mundo se alimentan de las estepas altoandinas y altiplanicas, estuvo en peligro de extincion y todacia es una especie que requiere de conservacion.		
Llama	Es uno de los camelidos mas grandes de Sudamerica habitan especialmente en el Altiplano puede llegar a alcanzar un metro de altura, sus orejas son punteagudas, al ser un camelido grande en algunos lugares suelen utilizarlos como animales de carga	d.	14
Alpaca	Es un animal mediano pertenece a la familia de camelidos, estatura promedio de 80 a 90 cm, son valiosos a causa de la calidad y la cantidad de lana, sus orejas son pequeñas y punteagudas		
Zorro	Son animales mamiferos carnivoros y omnivoros pueden alimentarse de gusanos, insectos, lombrices, roedores, conejos y aves pequeñas, son veloces y pequeños, se los identifica por sus grandes orejas, su color rojizo y su cola larga y espesa	M	
Vizcacha	Es un roedor grande, se alimenta de hierbas y vegetales duras, su color de paleje es gris claro o gris pardo, su habitat son los lugares rocosos		
Chinchillas	Son roedores pequeños presas de las aves rapaces, se alimentan de semillas, raíces, hojas, frutos, bayas, corteza, alfalfa y diferentes hierbas, acostumbran vivir en las grietas de las rocas		S
		OTIN.	•
Perdiz	Es una ave de la zona altiplanica se encuentra en elevaciones altas en matorrales y pastizales andinos rocosos, es omnivora, hervibora e insectivora		
Colibri	Son aves pequeñas y muy coloridas, miden aproximadamente desde los 5 cm hasta los 20 cm pueden llegar a vivir hasta 18 años, sus solores dependen mucho del sexo del colibri, se alimenta de del nectar de las flores		
Yaka yaka	Tambien conocido como pajaro carpintero andino, tiene el pico largo y afilado, se alimentan en pastizales, pajonales, orillas de rios de gusanos, larvas, insectos que encuentran por ahi, habita en lugares rocosos, los colores de sus plumas lo ayudan a camuflarse		
			_

MODULO DE CAPAS

Es la ventana donde se pueden pre visualizar las capas de los distintos puntos estratégicos del Municipio de Viacha

Figura 78: Modulo de capas.

De la siguiente manera es como se ve la pre visualización de la capa seleccionada en este caso se tomó como ejemplo la capa de canchas del Municipio de Viacha.

Presionamos en OpenLayers para que se pueda pre visualizar la capa.

Figura 79: Capa visualizada.

Se presiona en cualquier punto para que nos muestre los datos de dicho lugar

MODULO DE LAPSO DE TIEMPO

En el siguiente modulo se puede observar mediante un video la evolución histórica, los cambios que se tuvo en la cobertura forestal de distintos lugares del planeta.

Figura 80: Modulo de Lapso de tiempo 2022

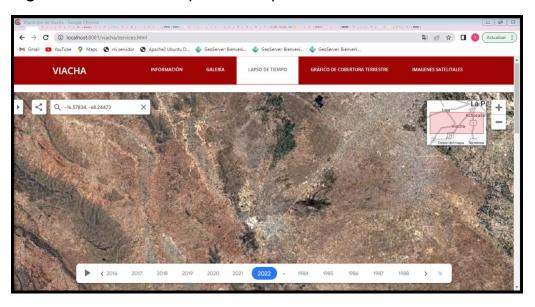
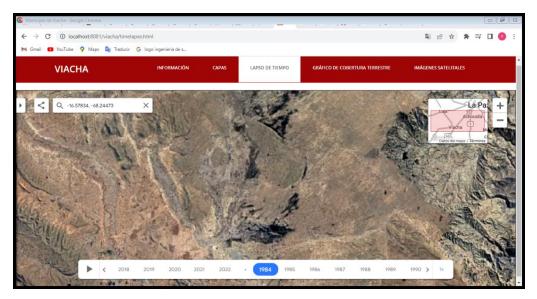
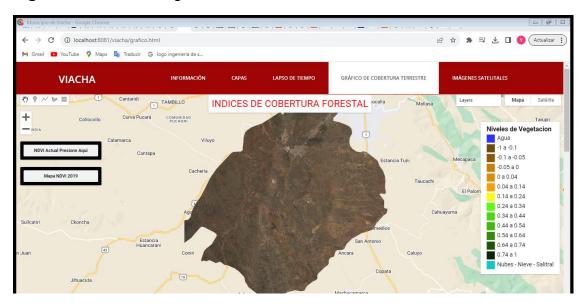
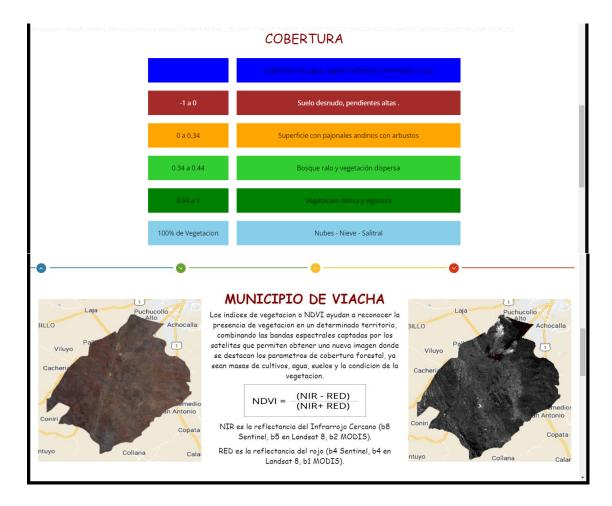



Figura 81: Modulo de Lapso de tiempo 1984




Se presiona en ▶ para que el video empiece a correr y II para pausar en el año que se desee.

MODULO DE GRAFICO DE COBERTURA FORESTAL

El módulo de grafico de cobertura forestal nos brinda los datos respecto a los índices de vegetación que se tiene

Figura 82: Modulo de gráfico de cobertura forestal.

- Se debe presionar en el botón ndvi para que se muestre la ventana para el grafico.
- Automáticamente se carga una nueva capa NDVI.
- Presionamos cualquier punto para obtener el grafico
- Una vez cargado el grafico se presiona en la flecha de la imagen
- Se presiona en que formato se desea descargar (SVG, PNG, CSV)

MODULO DE IMÁGENES SATELITALES

Mediante este módulo se logra obtener imágenes satelitales desde el 2016 hasta la actualidad en un lapso de 15 días.

Figura 83: Modulo de imágenes satelitales.

- Presionamos en el botón Calendario y se abrirá un panel.
- Seleccionamos en el panel la fecha de la cual queremos la imagen satelital.
- Presionamos en aplicar, se carga la nueva imagen satelital.
- Presionamos en cerrar.

3.8. METRICAS DE CALIDAD ISO 25000

La métrica de calidad ISO\IEC 25000, tiene por objetivo guiar la evaluación de calidad de productos software con el fin de cumplir y/o superar las expectativas del cliente, mejorando la calidad del código, calidad de ejecución y la calidad del uso mediante las siguientes características:

3.8.1. Funcionalidad

Son aquellas funciones y propiedades que satisfacen las necesidades implícitas o explicitas.

Tabla 20 Métricas internas.

CARACTERISTICA	METRICAS INTERNAS
Consistencia	Conexión con la plataforma
	 Conexión con los datos
	Conexión con los módulos

Completitud	 Datos actualizados
	 Datos comprensibles
	Coherencia de gráficos
Precisión	 Datos cercanos respecto al análisis de cobertura
	 Integridad de consultas
	 Integridad de algoritmos aplicados
Exactitud	Exactitud de consultas
	 Exactitud de gráficos
	 Exactitud de resultados de índices de vegetación
	 Exactitud de interacción

Tabla 21 Métricas de calidad y sus valores

METRICA	PUNTAJE	TOTAL
Conexión con la plataforma	92	
Conexión con los datos	92	92
Conexión con los módulos	92	92
Datos actualizados	95	
Datos comprensibles	92	94
Coherencia de gráficos	95	94
Datos cercanos respecto al análisis de cobertura	92	
Integridad de consultas	92	92.67
Integridad de algoritmos aplicados	94	92.07
Exactitud de consultas	94	
Exactitud de gráficos	95	
Exactitud de resultados de índices de vegetación	97	04.75
Exactitud de interacción	93	94.75
TOTAL		93.35%

3.8.2. Fiabilidad

Permite evaluar la capacidad de un sistema o componente para desempeñar las funciones especificadas, cuando se usa bajo unas condiciones y periodo de tiempo establecidos.

Se tiene la siguiente ecuación para calcular la fiabilidad de cada módulo.

$$R(t) = e^{-\gamma t}$$

Donde:

R (t) = Fiabilidad de un componente o subsistema.

Y = Tasa de constantes de fallo (número de fallas de acceso/ número total de accesos al sistema)

t = Periodo de operación de tiempo.

 $e^{-\gamma t}$ = Probabilidad de falla de un componente o subsistema en el tiempo t

$$e = 2.72$$

Tabla 22 Módulos y sus valores

N	MODULO	Y	t	R(t)
1	Módulo de Información	0.01	4	0.96
2	Módulo de Geoservicio	0.02	4	0.92
3	Módulo de TimeLapse	0.03	4	0.89
4	Módulo de índices de vegetación	0.03	4	0.89
5	Módulo de imágenes satelitales	0.03	4	0.89

$$Fiabilidad = \frac{0.96 + 0.92 + 0.89 + 0.89 + 0.89}{5} = 0.91$$

$$Fiabilidad = 0.91 * 100 = 91\%$$

El modelo tiene una fiabilidad del 91% por lo que se establece que un 9% presente algún fallo, el cual puede ser por diferentes factores tales como conexión al servidor y uso incorrecto del usuario, problemas con la conexión de internet.

3.8.3. Usabilidad

Mediante atributos permite entender la capacidad de ser aprendido, usado y resultar atractivo para los usuarios

Tabla 23 Características de las Métricas Internas.

CARACTERISTICAS	METRICAS INTERNAS		
Interfaz de usuario amigable	I1: Interfaz de datos amigable.		
	I2: Interfaz de gráficos amigable.		
	I3: Visor con interfaz amigable.		
Comprensión	C1: Comprensión de datos		
	C2: Comprensión de gráficos.		
Operatividad	O1: Correcta operacionalidad del visor		
	O2: Correcta operacionalidad de		
	visualización de datos		
	O3: Correcta operacionalidad de		
	obtención de datos.		
	O4: Correcta operacionalidad de los		
	gráficos.		
Atractividad	A1: Atractividad del visor		
	A2: Atractividad de los gráficos		
	A3: Atractividad de la visualización de		
	datos.		

Tabla 24 Valores obtenidos de la métrica de calidad.

METRICA	PUNTAJE TOTAL
I1: Interfaz de datos amigable.	90

I2: Interfaz de gráficos amigable.	95	91.67
I3: Visor con interfaz amigable.	90	
C1: Comprensión de datos	87	90
C2: Comprensión de gráficos.	93	
O1: Correcta operacionalidad del visor	96	
O2: Correcta operacionalidad de visualización de datos	92	
O3: Correcta operacionalidad de obtención de datos.	92	93.75
O4: Correcta operacionalidad de los gráficos.	95	
A1: Atractividad del visor	94	
A2: Atractividad de los gráficos	92	92.67
A3: Atractividad de la visualización de datos.	92	
TOTAL		92.27

De acuerdo a los datos obtenidos en la tabla de usabilidad, se concluye que el modelo tiene una usabilidad del 92,27%. Entonces nos indican que el sistema es fácil de manejar y comprensible.

3.8.4. Mantenibilidad

La Mantenibilidad son el conjunto de atributos que permiten medir, corregir, aumentar o modificar el software, dicho resultado se obtiene mediante la siguiente formula:

$$IMS = \frac{Mt - (Fa + Fb + Fc)}{Mt}$$

IMS= Índice de Madurez de Software

Mt = Numero de módulos total de la versión actual.

Fa = Numero de módulos de la versión actual que se cambiaron.

Fb = Numero de módulos de la versión actual que se añadieron.

Fc = Numero de módulos de la versión anterior que se eliminaron en la versión actual.

$$Mt = 5$$
; $Fa = 0$: $Fb = 0$; $Fc = 0$

$$IMS = \frac{5 - (0 + 0 + 0)}{5} = \frac{5}{5} = 1$$

Con el resultado obtenido se concluye que el sistema tiene un índice de madurez del 100%.

3.8.5. Eficiencia

Para obtener la eficiencia del modelo se necesita ponderar sus características esenciales y la relación entre el resultado alcanzado y los recursos utilizados.

$$Eficiencia = \frac{\sum xi}{n} * \frac{100}{n}$$

 $\sum xi$ = Sumatoria de los valores.

n= Numero de preguntas.

> Rango de evaluación

Tabla 25 Valores de evaluación.

ESCALA	VALOR
Muy bueno	5
Bueno	4
Regular	3
Malo	2
Pésimo	1

Tabla 26 Preguntas de evaluación.

PREGUNTA	PORCENTAJE
¿La información de salida está presentada de manera comprensible fácil de entender?	5
¿Procesa y responde adecuadamente cuando se realiza una búsqueda o consulta?	5

¿Son precisos y actualizados los datos de salida?	5
¿Las respuestas de consultas y/o búsquedas se procesan de	Δ
manera rápida?	ਰ
¿Se ha diseñado el modelo para facilitar datos y para ser	1
fácilmente utilizada por el usuario?	4
¿Es fácil navegar por los distintos módulos?	5

Nivel de eficiencia

$$Eficiencia = \frac{5+5+5+4+4+5}{6} * \frac{100}{6}$$

$$Eficiencia = \frac{28}{6} * \frac{100}{6} = 4.667 * 16.667 = 77.78\%$$

El nivel de eficiencia del modelo es de 77.78%

3.8.6. Portabilidad

Se refiere a la capacidad del software de ser transferido de un entorno a otro tomando en cuenta la facilidad de instalación, ajuste y adaptación al cambio, la cual se calcula mediante la siguiente formula:

$$Portabilidad = 1 - \frac{ET}{ER}$$

Donde:

ET = Recursos necesarios para llevar el sistema a otro entorno.

ER = Recursos necesarios para crear el sistema en el entorno residente.

Los recursos que se requiere para trasladar el sistema a otro entorno son: Servicio de servidor FTP para alojar archivos shp, geoservicio y el código fuente del modelo, cuenta creada en la plataforma google earth engine, conexión a internet. Considerado los aspectos citados se tiene: ET=3.

Para crear el modelo en el entorno residente se necesita contar con un equipo que tenga sistema operativo de (Windows, Linux o Mac OS) en los cuales se requiere tener instalado servidor xampp, Filezilla, Editor de código, Qgis, archivos shp de los límites

de la zona de estudio, lenguaje de programación, Geoserver y un navegador. Considerado los aspectos citados se tiene: ER=9

Con la información obtenida calculamos la portabilidad del modelo:

$$Portabilidad = 1 - \frac{3}{9} = 1 - 0.333 = 0.667 * 100\% = 66.67\%$$

Con el resultado obtenido nos indica que el modelo es 66.67% portable.

3.8.7. Análisis de resultados

Tabla 27 Resultado de la evaluación de calidad.

N°	CARACTERISTICA	% DE PREFERENCIA
1	Funcionalidad	93.35%
2	Fiabilidad	91%
3	Usabilidad	92.27%
4	Mantenibilidad	100%
5	Eficiencia	77.78%
6	Portabilidad	66.67%

Evaluación de calidad global 86.845%

La calidad del sistema corresponde al 86%, lo que se interpreta como la satisfacción que tiene un usuario al interactuar con el sistema.

3.9. ESTIMACION DE COSTOS COSMIC

Para lograr obtener las métricas de estimación de costo con el método Cosmic fueron realizadas mediante tres fases comprendidas por las siguientes:

1. Fase: Estrategia de medición.

Fase: Mapeo.
 Fase: Medición.

3.7.1. Estrategia de medición

Requerimientos funcionales del modelo:

- Módulo de información. Es el módulo de presentación del municipio, el usuario podrá observar información relevante respecto al municipio ya sea en datos y gráficos.
- Módulo de capas Geoserver. El usuario podrá visualizar el catálogo de capas, descargar capas en formato shp del municipio de Viacha respecto a los distintos puntos estratégicos como ser: entidades financieras, plazas, canchas deportivas, mercados, iglesias, fabricas, unidades educativas)
- Módulo de TimeLapse. El usuario puede observar un lapso de tiempo de un determinado lugar introduciendo las coordenadas (latitud y longitud), dicho timelapse empieza en el año 1984 captando imágenes satelitales del transcurso de los años.
- Módulo de índices de vegetación. El usuario ingresa al módulo la cual se conecta con la plataforma Google earth engine, presiona el botón Ndvi, marca un punto en el mapa y automáticamente se genera el grafico de índices de vegetación el cual puede ser descargado en diferentes formatos (CSV, SVG y PNG) para su respectivo análisis.
- Módulo de imágenes satelitales: el usuario ingresa al módulo y seguidamente se conecta con la plataforma Google Earth Engine, presiona el botón de Calendario, y se abre una ventana para seleccionar la fecha de la cual quiere la imagen satelital, una vez seleccionada presiona en aplicar y se carga la imagen satelital, puede buscar imágenes de las fechas que desee

3.7.2. Mapeo y medición

Módulo de información:

1. Entrada: Ingresa al modulo

2. Salida: Mostrar en pantalla el módulo de información

3. **Lectura:** Visualiza datos importantes.

4. Salida: Muestra información del Municipio.

5. **Lectura:** Visualiza información respecto a su flora y fauna.

- 6. Salida: Carga en pantalla imágenes y descripción de flora y fauna.
- 7. Lectura: visualiza imágenes del municipio.
- 8. Salida: Mostrar imágenes en pantalla de industrias, plazas, hospitales, etc.
- Salida: Mostrar en 'pantalla enlaces para las paginas oficiales del Municipio de Viacha.

Puntos de Función COSMIC: 9 CFP

Descarga de límites

- 1. Entrada: Ingresamos a GeoBolivia
- 2. Salida: Carga en pantalla el portal de GeoBolivia
- 3. Entrada: Ingresamos a Catalogo
- 4. Salida: Se carga en pantalla el módulo de catalogo
- 5. **Proceso:** Presionamos en catalogo avanzado
- 6. Salida: Se carga el modulo en pantalla
- 7. Proceso: Presionamos en Buscar
- 8. **Entrada:** Escribimos lo que queremos buscar (Municipios de Bolivia 2018).
- 9. Salida: Se carga las plantillas encontradas
- 10. **Proceso:** Presionamos en la plantilla buscada.
- 11. Salida: Se carga la información de la plantilla
- 12. **Proceso:** Presionamos en otros recursos para descargar
- 13. **Salida:** Se empieza a descargar el archivo.

Puntos de Función COSMIC: 13CFP

Proceso en ggis

- 1. Entrada: Abrimos la aplicación de QGIS
- Salida: Se carga la aplicación QGIS
- 3. **Entrada:** Buscamos el archivo descargado en formato shp
- 4. Proceso: Presionamos en el archivo
- 5. Salida: Se carga el archivo
- 6. Entrada: Seleccionamos la capa
- 7. **Proceso:** Presionamos para abrir la tabla de atributos.
- 8. Proceso: Buscamos mediante los atributos el municipio de Viacha

- 9. Proceso: Seleccionamos el municipio
- 10. Salida: Se marca el municipio seleccionado de otro color
- 11. **Proceso:** Presionamos sobre la capa principal.
- 12. Proceso: Presionamos en exportar.
- 13. Proceso: Presionamos en guardar objeto seleccionado
- 14. Salida: Se carga la nueva capa creada

Puntos de Función COSMIC: 14 CFP

Subir archivos a la plataforma

- 1. Entrada: Creamos una cuenta en la plataforma
- 2. Entrada: Ingresamos correo
- 3. Entrada: Ingresamos datos personales
- 4. Salida: Mensaje de confirmación de cuenta creada
- 5. Entrada: Ingresamos a la plataforma
- 6. Entrada: Se ingresa a Code Editor
- 7. Salida: Se carga la pantalla de la plataforma
- 8. Entrada: Presionamos en Asset.
- 9. Entrada: Presionamos en NEW
- 10. **Entrada:** Seleccionamos el tipo de archivo a subir (shp)
- 11. Proceso: Presionamos en Select
- 12. Proceso: Buscamos el archivo
- 13. Entrada: Asignamos nombre al archivo
- 14. Proceso: Presionamos en Upload
- Proceso: El archivo comienza a ser subido a la plataforma para su respectivo desarrollo
- 16. Salida: Se adiciona el archivo a la plataforma

Puntos de Función COSMIC: 16 CFP

Módulo de Capas

- 1. Entrada: Selecciona el modulo
- 2. Salida: Se conecta con el GeoServer
- 3. **Salida:** Carga la pre visualización de capas.

- 4. Proceso: Busca la capa de su preferencia.
- 5. Proceso: Selecciona la capa
- 6. Proceso: Presiona OpenLayers
- 7. Salida: Carga la capa seleccionada con sus datos
- 8. Proceso. Presiona Visualizador
- 9. Salida: Carga las capas que se tienen en el GeoServer.
- 10. **Proceso:** Selecciona las capas que desea cargar al mapa
- 11. Salida: Las capas se cargan al mapa.
- 12. Proceso: Presiona en guardar.
- 13. Salida: Se descarga la capa.

Puntos de Función COSMIC: 13 CFP

Modificar capas para subir al GeoServer

- Proceso: buscamos las coordenadas geográficas de lugares importantes del Municipio de Viacha
- 2. **Proceso:** anotamos las coordenadas ya sea latitud y longitud de cada punto
- Entrada: lo añadimos a un bloc de notas
- 4. Proceso: Ingresamos a la plataforma de QGIS
- 5. **Proceso:** seleccionamos en capa
- 6. **Proceso:** presionamos en añadir capa
- 7. **Proceso:** Seleccionamos en añadir capa de texto delimitado.
- 8. **Proceso:** Buscamos el bloc de notas
- 9. Proceso: añadimos nombre a la nueva capa
- 10. Proceso: Seleccionamos las geometrías
- 11. Proceso: presionamos en añadir
- 12. **Salida**: Se carga la nueva capa de texto delimitado
- 13. **Proceso**: presionamos en exportar
- 14. Proceso: presionamos en Guardar como
- 15. Salida: Se carga la nueva capa
- 16. **Proceso**: Presionamos en propiedades
- 17. Proceso: seleccionamos los estilos que tendrá nuestra capa

- 18. Proceso: Presionamos en Estilo
- 19. Proceso: Presionamos en Guardar estilo
- 20. Proceso: Seleccionamos en estilo SLD
- 21. Entrada: Añadimos nombre al estilo
- 22. Proceso: Presionamos en Aceptar
- 23. Salida: Se carga el nuevo estilo en la plataforma

Puntos de Función COSMIC: 23 CFP

> Subir capas al GeoServer

- 1. Proceso: Alquilamos un Servidor FTP
- 2. **Proceso**: Descargamos FileZilla
- Proceso: Transferimos los archivos al servidor.
- 4. Proceso: Instalamos GeoServer
- 5. Proceso: Creamos el espacio de trabajo
- 6. Proceso: Seleccionamos en Capas
- 7. **Proceso**: Añadimos la capa en el espacio de trabajo.
- 8. **Proceso**: Presionamos en estilos
- 9. **Proceso**: subimos el archivo con el estilo correspondiente
- 10. **Proceso** guardamos el estilo.
- 11. **Proceso**: presionamos en publicación
- 12. Proceso: añadimos datos de la capa
- 13. Proceso: Presionamos en guardar
- 14. Salida: la capa se adiciona en la pre visualización de capas lista para ser usada

Puntos de Función COSMIC: 14 CFP.

Módulo de Time Lapse

- 1. Entrada: Selecciona el modulo Time Lapse
- Proceso: la página se conecta con la plataforma Google Earth Engine.
- 3. Salida: se empieza a cargar el Lapso de Tiempo.
- 4. **Proceso**: Busca en el mapa el lugar de donde quiere realizar el Time Lapse.
- Proceso: Ingresa las coordenadas para buscar el lugar.
- 6. Salida: Carga el mapa de dicha ubicación.

- 7. **Proceso**: Presiona en ▶ para dar comienzo al Time Lapse.
- 8. Salida: Se empieza recorrer los años cargando las imágenes.
- 9. **Proceso**: Presiona en II para hacer una pausa en el año que se requiere.
- 10. **Salida**: Muestra la imagen del año y lugar en específico.

Puntos de Función COSMIC: 10 CFP

Módulo de Cobertura Forestal

- 1. Entrada: Ingresa al módulo de Cobertura Forestal
- 2. **Salida**: La página se conecta a la plataforma Google Earth Engine.
- 3. **Salida**: Empieza a cargar el mapa del municipio de Viacha.
- 4. Proceso: presiona el botón NDVI
- 5. Salida: Se carga el mapa NDVI
- 6. **Salida** se muestra el panel para el grafico de cobertura forestal
- 7. **Proceso**: se marca en el mapa el lugar del cual se requiere conocerlos datos
- 8. **Salida**: se carga el grafico de cobertura forestal, su latitud y longitud.
- 9. **Proceso**: se presiona en
- 10. Salida: se carga la imagen en otra página.
- 11. Proceso: Presiona en Download (CSV, SVG y PNG).
- 12. **Salida**: Se descarga el archivo.
- 13. Proceso: Presiona en abrir.
- 14. Salida: Abre el archivo en pantalla.

Puntos de Función COSMIC: 14 CFP

Módulo de imágenes Satelitales

- 1. Entrada: Ingresa al módulo de Imágenes Satelitales
- 2. **Salida**: La página se conecta con la plataforma Google Earth Engine.
- 3. **Salida**: Empieza a cargar el mapa de Municipio.
- 4. Proceso: Presiona en el botón CALENDARIO
- 5. **Salida**: Se carga el panel de calendario.
- 6. **Proceso**: Busca la fecha que desea.
- 7. Proceso: Presiona en Aplicar.
- 8. **Salida**: Se carga el mapa de la fecha aplicada
- 9. **Proceso**: Se presiona en Cerrar.

10. Salida: Se cierra el panel.

Puntos de Función COSMIC: 10 CFP

De esta forma, hemos determinado que nuestro trabajo de investigación tiene una medición de:

136 puntos de función COSMIC

Se va a suponer que para el desarrollo del software se tendrá un sueldo promedio de 3000 Bs, para lo cual se utiliza la siguiente formula:

$$\textit{Costo por punto de funcion} = \frac{\textit{Costo mes del equipo de trabajo}}{\textit{puntos de funcion mes}}$$

Costo por punto de funcion =
$$\frac{3000\,Bs}{30\,puntos\,de\,funcion} = 100\,BS/PF$$

3.7.2.1. Estimación de costos del modelo

Para poder determinar el costo de un proyecto de software usaremos la siguiente formula:

Costo del modelo = tamaño del modelo * costo por punto de funcion

$$Costo\ del\ modelo = 136\ CFP * 100\ Bs$$

$$Costo\ del\ modelo=13600\ Bs$$

3.7.2.2. Tiempo que durara el desarrollo del proyecto

Los puntos de función COSMIC los podemos utilizar también para determinar cuánto tiempo durara el desarrollo del modelo

$$Duracion \ del \ modelo = \frac{136 \ CFP}{30 \ FP \ mes}$$

 $Duracion\ del\ modelo=4.5\ meses$

3.7.2.3. Conclusión

De esta forma se determina que el modelo tendrá:

Duración de 4.5 meses en desarrollo y tendrá un costo de 13600 Bs

CAPÍTULO IV PRUEBAS Y RESULTADOS

4. PRUEBAS Y RESULTADOS

Hernández (2014), cita que "Una hipótesis se retiene como un valor aceptable del parámetro, si es consistente con los datos. Si no lo es, se rechaza (pero los datos no se descartan)".

En este punto se realiza la prueba de hipótesis planteada en el capítulo uno, demostrando si la hipótesis tiene una confianza del 95%, empleando el método de distribución Z en las siguientes coordenadas lon: -68.28, lat: -16.54 desde el 28 de marzo de 2016 al 20 de julio de 2023 con los datos obtenidos aplicando la fórmula de Índice de Vegetación de Diferencia Normalizada (NDVI) que mide el verdor y la densidad de la vegetación captada en una imagen de satélite, el índice está definido por valores que van de -1.0 a 1.0, donde los valores negativos están formados principalmente por nubes, agua y nieve, y los valores negativos cercanos a cero están formados principalmente por rocas y suelo descubierto. Los valores muy pequeños (0,1 o menos) de la función NDVI corresponden a áreas sin rocas, arena o nieve. Los valores moderados (de 0,2 a 0,3) representan arbustos y praderas, mientras que los valores grandes (de 0,6 a 0,8) indican bosques templados y tropicales.

4.1. Numero de muestras

El número de muestras es igual a 258 que fueron obtenidas de la coordenada **LON: - 68.28, LAT: -16.54** en el intervalo de las fechas 28/03/2016 y 20/07/2023 son:

Tabla 28 Datos obtenidos para la muestra.

DATOS: LON: -68.28, LAT: -16.54							
FECHAS	DATOS	FECHAS	DATOS	FECHAS	DATOS		
Mar 28, 2016	0.327	Jun 30, 2021	0.262	Jul 25, 2022	0.105		
May 4, 2016	0.263	Jul 2, 2021	0.25	Jul 27, 2022	0.114		
May 7, 2016,	0.262	Jul 5, 2021	0.238	Jul 30, 2022,	0.11		
May 27, 2016	0.223	Jul 7, 2021	0.233	Aug 1, 2022,	0.11		
Jun 13, 2016	0.192	Jul 10, 2021	0.253	Aug 4, 2022,	0.101		
Jun 16, 2016	0.196	Jul 12, 2021	0.24	Aug 6, 2022,	0.106		

Aug 25, 2016	0.157	Jul 15, 2021	0.228	Aug 9, 2022,	0.109
Feb 1, 2017	0.272	Jul 17, 2021	0.232	Aug 11, 2022	0.107
Mar 20, 2017	0.358	Jul 20, 2021	0.243	Aug 14, 2022	0.105
May 9, 2017	0.299	Jul 22, 2021	0.224	Aug 16, 2022	0.105
Sep 21, 2017	0.21	Jul 27, 2021	0.221	Aug 19, 2022	0.106
Sep 24,2017	0.23	Jul 30, 2021	0.2	Aug 21, 2022	0.103
Oct 19, 2017	0.26	Aug 6, 2021	0.198	Aug 24, 2022	0.102
Mar 23, 2018	0.459	Aug 9, 2021	0.186	Aug 29, 2022	0.095
Apr 9, 2018	0.375	Aug 11, 2021	0.189	Aug 31, 2022	0.086
Apr 17, 2018	0.36	Aug 14, 2021	0.183	Sep 8, 2022,	0.104
Apr 19, 2018	0.321	Aug 16, 2021	0.171	Sep 13, 2022	0.108
Apr 22, 2018,	0.325	Aug 19, 2021	0.168	Sep 15, 2022	0.113
May 2, 2018,	0.298	Aug 21, 2021	0.177	Sep 18, 2022	0.11
May 7, 2018,	0.313	Aug 24, 2021	0.158	Sep 20, 2022	0.113
May 12, 2018	0.277	Aug 26, 2021	0.169	Sep 23, 2022	0.108
Jun 18, 2018,	0.144	Aug 29, 2021	0.084	Sep 25, 2022	0.122
Jun 23, 2018,	0.15	Aug 31, 2021	0.173	Sep 28, 2022	0.107
Jun 26, 2018,	0.136	Sep 3, 2021,	0.165	Sep 30, 2022	0.111
Jun 28, 2018	0.134	Sep 8, 2021,	0.129	Oct 5, 2022	0.118
Jul 23, 2018,	0.151	Sep 10, 2021	0.177	Oct 8, 2022	0.115
Jul 28, 2018	0.145	Sep 18, 2021	0.168	Oct 10, 2022	0.115
Aug 12, 2018	0.148	Sep 20, 2021	0.163	Oct 13, 2022	0.115
Sep 9, 2018	0.139	Sep 28, 2021	0.171	Oct 23, 2022	0.118
Sep 21, 2018	0.134	Sep 30, 2021	0.166	Oct 25, 2022	0.109
Oct 16, 2018	0.165	Oct 3, 2021	0.173	Oct 28, 2022	0.111
Nov 3, 2018	0.163	Oct 13, 2021	0.165	Oct 30, 2022	0.106
Mar 8, 2019	0.377	Oct 15, 2021,	0.17	Nov 2, 2022	0.096
Mar 23, 2019	0.473	Oct 18, 2021,	0.171	Nov 4, 2022,	0.102
Apr 7, 2019	0.671	Oct 20, 2021,	0.154	Nov 7, 2022,	0.084
Apr 9, 2019	0.679	Oct 23, 2021,	0.173	Nov 9, 2022,	0.09
May 4, 2019	0.606	Oct 25, 2021,	0.169	Nov 12, 2022	80.0

Jun 18, 2019	0.254	Oct 30, 2021,	0.177	Nov 14, 2022	0.094
Jun 28, 2019	0.179	Nov 7, 2021,	0.131	Nov 17, 2022	0.083
Jul 1, 2019	0.187	Nov 22, 2021	0.167	Dec 2, 2022	0.085
Jul 16, 2019	0.166	Dec 12, 2021	0.158	Dec 24, 2022	0.099
Sep 16, 2019	0.169	Jan 1, 2022	0.177	Dec 27, 2022	0.09
Nov 18, 2019	0.18	Jan 3, 2022,	0.158	Jan 11, 2023	0.109
Jan 9, 2020	0.216	Feb 5, 2022	0.136	Jan 16, 2023	0.096
Apr 1, 2020	0.605	Feb 20, 2022	0.116	Jan 23, 2023	0.033
Apr 6, 2020,	0.566	Mar 2, 2022	0.116	Feb 17, 2023	0.127
Apr 16, 2020,	0.433	Mar 29, 2022	0.13	Feb 25, 2023,	0.153
Apr 23, 2020,	0.343	Apr 6, 2022	0.122	Mar 2, 2023,	0.165
Apr 28, 2020,	0.29	Apr 11, 2022	0.138	Mar 4, 2023,	0.211
May 1, 2020,	0.286	Apr 13, 2022	0.143	Apr 6, 2023,	0.243
May 18 2020	0.179	Apr 16, 2022	0.138	Apr 18, 2023,	0.213
May 21 2020	0.201	Apr 18, 2022	0.143	Apr 21, 2023,	0.202
Jun 7, 2020	0.156	Apr 21, 2022,	0.138	Apr 23, 2023,	0.206
Jun 15, 2020	0.156	Apr 23, 2022	0.135	Apr 26, 2023,	0.196
Jun 17, 2020	0.138	Apr 26, 2022	,0.133	Apr 28, 2023,	0.189
Aug 24, 2020	0.147	May 1, 2022	0.128	May 1, 2023,	0.17
Aug 26, 2020	0.141	May 3, 2022	0.135	May 3, 2023,	0.178
Sep 5, 2020,	0.141	May 6, 2022	0.141	May 11, 2023	0.149
Oct 8, 2020,	0.151	May 11, 2022	0.139	May 13, 2023	0.181
Nov 22, 2020	0.136	May 13, 2022	0.14	May 16, 2023	0.172
Dec 12, 2020	0.177	May 16, 2022	0.133	May 18, 2023	0.163
Feb 25, 2021	0.25	May 18, 2022	0.142	May 21, 2023	0.154
Apr 16, 2021	0.622	May 21, 2022	0.143	May 23, 2023	0.147
Apr 18, 2021	0.645	May 23, 2022	0.145	May 26, 2023	0.14
Apr 21, 2021	0.638	May 26, 2022	0.089	May 28, 2023	0.121
Apr 26, 2021,	0.613	May 28, 2022	0.135	May 31, 2023	0.132
Apr 28, 2021	0.542	May 31, 2022	0.124	Jun 2, 2023	0.136
May 1, 2021	0.435	Jun 2, 2022,	0.123	Jun 5, 2023	0.129

May 3, 2021	0.532	Jun 7, 2022,	0.14	Jun 7, 2023	0.14
May 6, 2021	0.321	Jun 10, 2022,	0.073	Jun 10, 2023	0.127
May 8, 2021	0.481	Jun 12, 2022,	0.138	Jun 12, 2023	0.133
May 11 2021	0.457	Jun 15, 2022,	0.133	Jun 15, 2023	0.122
May 16, 2021	0.416	Jun 17, 2022,	0.135	Jun 17, 2023	0.132
May 18, 2021	0.391	Jun 20, 2022,	0.12	Jun 20, 2023	0.124
May 21, 2021	0.252	Jun 22, 2022	0.133	Jun 22, 2023	0.127
May 28, 2021	0.326	Jun 25, 2022,	0.124	Jun 25, 2023	0.118
Jun 2, 2021	0.314	Jun 27, 2022,	0.122	Jun 27, 2023	0.114
Jun 5, 2021	0.296	Jun 30, 2022,	0.12	Jun 30, 2023	0.105
Jun 7, 2021	0.28	Jul 2, 2022,	0.093	Jul 2, 2023	0.117
Jun 10, 2021	0.214	Jul 5, 2022,	0.119	Jul 5, 2023	0.113
Jun 12, 2021	0.274	Jul 7, 2022,	0.119	Jul 7, 2023	0.112
Jun 15, 2021	0.258	Jul 10, 2022,	0.104	Jul 10,2023	0.133
Jun 17, 2021	0.245	Jul 12, 2022,	0.115	Jul 12, 2023	0.136
Jun 20, 2021	0.264	Jul 17, 2022,	0.112	Jul 15, 2023	0.124
Jun 22, 2021	0.249	Jul 20, 2022,	0.098	Jul 17, 2023	0.124
Jun 25, 2021	0.247	Jul 22, 2022,	0.111	Jul 20, 2023	0.130

Media Aritmética

$$\ddot{\mathbf{X}} = \frac{\sum_{i}^{n} =_{1} Xi}{n}$$

$$X = \frac{49.643}{258} = \mathbf{0}, \mathbf{192414729}$$

> Desviación Estándar

$$S_X = \sqrt{\frac{\sum_{i}^{n} =_1 (X_1 - \ddot{X})^2}{n - 1}}$$

$$S_X = \sqrt{\frac{3,649370624}{258 - 1}} S_{X=0}, 119163273$$

4.2. PRUEBA DE HIPÓTESIS

Se procede a realizar la respectiva prueba de hipótesis planteada en el presente

trabajo de investigación.

4.2.1. Proposición de hipótesis

Planteamos dos hipótesis siendo la alternativa la que se quiere demostrar y rechazar

la hipótesis nula.

H0 El Modelo de análisis forestal en base a Google Earth Engine no recopila datos, no

genera histogramas, ni capta imágenes satelitales no brinda información respecto a

los índices de vegetación, no favorece el monitoreo de una ciudad completa, aplicando

lo

s conocimientos adquiridos en ingeniería de sistemas no se estima el crecimiento

forestal del Municipio de Viacha.

H1 El Modelo de análisis forestal en base a Google Earth Engine recopila datos, genera

histogramas y capta imágenes satelitales que brinda información respecto a los índices

de vegetación, favoreciendo el monitoreo de una ciudad completa, aplicando los

conocimientos adquiridos en ingeniería de sistemas estimando el crecimiento forestal

del Municipio de Viacha, la presente investigación tendrá una eficacia del 95%.

 $H0 \neq 95\%$

H1 = 95%

> Valor de significancia

Según Hernández (2014), la significancia de un trabajo de tesis de investigación es del

5% en términos de probabilidad 0.05

 $\propto = 0.05$

$$Z_{1-\frac{\alpha}{2}=1-\frac{0.05}{2}}$$

$$Z = 0.975$$

190

Figura 84: Tabla de valores Z.

z	10	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
11	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3	0.9987	0.9990	0.9993	0.9995	0.9997	0.9998	0.9998	0.9999	0.9999	1.0000

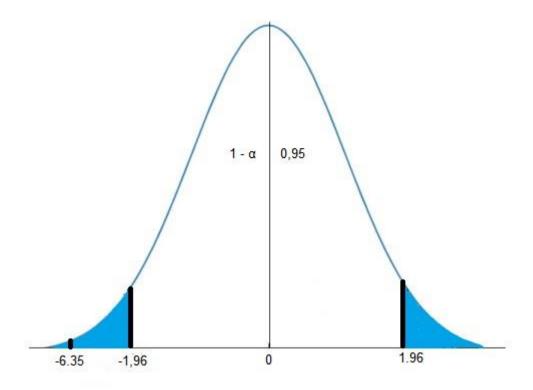
Nota: Tomado de jrvargas, (2010).

$Z = 0.975 \rightarrow Z = 1.96$

El intervalo de probabilidad comprendido entre -z y z, para 1.96 el intervalo es del 95% (0.95)

Zona critica izquierda -1.96

Zona critica derecho 1,96


> Estadístico de prueba

$$Z = \frac{X - \mu}{\sigma}$$

$$Z = \frac{0,192414729 - 0.95}{0,119163273}$$

$$Z = -6,357539958$$

Figura 85: Figura de intervalo de aceptación y rechazo

4.3. Análisis de resultados

Se obtiene como resultado el cálculo del nivel de confianza de Z = -6.35 por lo que cae en la zona de región critica, por lo que se rechaza la Hipótesis Nula H0, y se acepta la Hipótesis Alternativa H1, con un intervalo de confianza de 95 %.

CAPÍTULO X CONCLUSIONES Y RECOMENDACIONES

5. CONCLUSIONES Y RECOMENDACIONES

El presente capítulo describe las conclusiones alcanzadas luego de realizar el trabajo de investigación en función a los objetivos propuestos y el planteamiento de la hipótesis, con el desarrollo del trabajo de investigación se da recomendaciones al lector, sobre futuros temas, como una continuación al presente trabajo de investigación.

El modelo de análisis forestal en base a Google Earth Engine está desarrollado en una plataforma en la nube, lo cual dan resultados casi exactos, debido a diversos factores que presentan los sistemas de teledetección.

5.1. ESTADO DE LOS OBJETIVOS

Diseñar un Modelo de análisis forestal en base a Google Earth Engine aplicado al Gobierno Autónomo Municipal de Viacha, Bolivia que brinde datos e información referente al progreso del medio ambiente.

En el capítulo 3 se presenta el desarrollo del modelo de análisis forestal este proceso es realizado mediante algoritmos de Google Earth Engine para analizar los índices de cobertura forestal logrando obtener datos e imágenes satelitales del Municipio de Viacha.

5.1.1. Estados de los objetivos específicos

- "Obtener datos y diagnosticar la situación actual del Gobierno Autónomo Municipal de Viacha respecto a su entorno ambiental", esto se lo realizo en la primera etapa donde se recopilo datos sobre el Municipio de Viacha, respecto su vegetación, fauna y población.
- "Búsqueda y análisis de imágenes de satélite desde el banco de datos de Google Earth Engine", seguidamente después crear la cuenta en la plataforma de Google Earth Engine se procedió visualizar las colecciones de imágenes satelitales de la cual se eligió la adecuada para nuestro tema de estudio.

- "Implementar algoritmos de Google Earth Engine para la realización del modelo aplicado al Gobierno Autónomo Municipal de Viacha", mediante los algoritmos que es lo más fundamental para realizar el modelo se logró obtener la información que se necesita para el análisis de datos.
- "Desarrollar aplicaciones utilizando la plataforma Google Earth Engine a fin de conocer la información de los cambios forestales" los cuales se realizó en el Editor de Código de la plataforma, con la primera aplicación se obtuvo imágenes satelitales desde el año 2016 hasta la actualidad, la segunda aplicación nos brinda los gráficos de cobertura forestal en fechas continuas, la tercera aplicación nos muestra un video global que permite ver como cambio el Municipio de Viacha desde 1984, con las cuales se brinda datos e información de la cobertura forestal.
- "Analizar la información de la cobertura terrestre para ver y evaluar las variaciones cronológicas" los cuales se realizó una vez obtenida los datos de cobertura forestal.
- "Desarrollar reportes de índices de vegetación hasta la actualidad y el pronóstico del mismo" mediante el grafico de cobertura se puede obtener los datos en diferentes formatos CSV, SVG, PNG para ser descargados y analizados

5.2. ESTADO DE LA HIPÓTESIS

La hipótesis planteada es la siguiente: "El Modelo de análisis forestal en base a Google Earth Engine recopila datos, genera histogramas y capta imágenes satelitales que brinda información respecto a los índices de vegetación, favoreciendo el monitoreo de una ciudad completa, aplicando los conocimientos adquiridos en ingeniería de sistemas estimando el crecimiento forestal del Municipio de Viacha, la presente investigación tendrá una eficacia del 95%".

Aplicando los algoritmos propios de Google Earth Engine como de aquellos planteados por el autor, las herramientas utilizadas para la realización del modelo y de acuerdo a la metodología aplicada ISO 25000 en la cual se logró obtener el 86.845% de eficacia al momento de aplicar el modelo. Se tiene la evidencia de que el modelo de análisis forestal en base a Google Earth Engine aplicado al Gobierno Autónomo Municipal de Viacha, asegura la calidad de sus resultados.

5.3. CONCLUSIONES

Después de realizar el modelo de análisis forestal en base a Google Earth Engine aplicado al Gobierno Autónomo Municipal de Viacha, se obtienen las siguientes conclusiones:

- Con el modelo se logra obtener los índices de cobertura forestal en un formato CSV, de distintos puntos del Municipio de Viacha, los cuales se actualizan constantemente y almacenan los datos desde que el satélite empezó a captar imágenes satelitales del lugar.
- Se logra obtener imágenes satelitales del Municipio de Viacha en distintas fechas,
 en las cuales se puede observar los cambios forestales que se tuvo.
- Con el modelo se puede observar los gráficos de cobertura forestal que pueden ser descargados para su respectivo análisis.
- Este modelo abre la posibilidad de visualizar el lapso de tiempo en un video global donde se puede observar los cambios que se tuvo año tras año de distintos lugares.

5.4. RECOMENDACIONES

De acuerdo a la información que se pudo recabar y generar durante la investigación, se detalla las siguientes recomendaciones:

- Se recomienda buscar información respecto a la plataforma con trabajos realizados en el exterior, ya que es difícil obtener información de trabajos locales debido a que no se llevaron investigaciones en base a este tema.
- Para generar imágenes satelitales de buena resolución el área de estudio debe ser mayor.
- Para obtener los datos de cobertura forestal es necesario que se genere primeramente los gráficos.
- Ampliar la información para generar más modelos que permitan explorar con mayor profundidad los índices de vegetación ya que en la plataforma Google Earth engine existen diferentes índices para trabajar.
- Se recomienda poner en práctica los algoritmos en el editor de código de Google
 Earth Engine, para tener más conocimiento de esta plataforma tan eficiente.

•	Se continúe con la investigación presente para tener más datos respecto a Cobertura forestal ya que el planeta está en un cambio constante.	la
	Cobertura lorestar ya que er pianeta esta en un cambio constante.	

BIBLIOGRAFÍA

BIBLIOGRAFIA

Aeroterra. (s.f.). Sistemas de información geográfica. https://www.aeroterra.com/es-ar/que-es-gis/introduccion

Alburquerque, F. y Pérez, S., (s.f.). El desarrollo territorial: enfoque, contenido y políticas. http://www.conectadel.org/wp-content/uploads/downloads/2013/09/EL-ENFOQUE-SOBRE-EL-DESARROLLO-TERRITORIAL-doc-Mesa-de-Programas.pdf

Alvarez, M., (2003). Que es Python. desarrolloweb.com. https://desarrolloweb.com/articulos/1325.php

Arenas, D., Hernández, H., y Franco, C., (2019). Preprocesamiento y procesamiento de imágenes Sentinel 2 con Google Earth Engine. Instituto Geografico Agustin Codazzi.

Atahuichi. G., (2014). "Sistema Web De Control De Pedidos Y Ventas Caso: Empresa Itseven Soluciones Informáticas Integrales". (Proyecto de Grado). Universidad Mayor De San Andrés Facultad De Ciencias Puras Y Naturales Carrera De Informática.

AXESS Networks. (s.f.) Las imágenes satelitales y sus aplicaciones en la vida cotidiana. https://axessnet.com/las-imagenes-satelitales-y-sus-aplicaciones-en-la-vida-cotidiana/

Baena, G., Mendoza, R., y Coronado, E. (2019): "Importancia de la norma ISO/EIC 27000 en la implementación de un sistema de gestión de la seguridad de la información", Revista contribuciones a la Economía. https://www.hacienda.go.cr/Sidovih/uploads//Archivos/Articulo/La%20importancia%20 de%20la%20norma-ISO-eic.pd

Bonnesoeur V., Locatelli B., Ochoa-Tocachi B.F., 2019. Impactos de la Forestación en el Agua y los Suelos de los Andes: ¿Qué sabemos? Resumen de políticas, Proyecto "Infraestructura Natural para la Seguridad Hídrica" (INSH), Forest Trends, Lima, Perú.

Camelier, J. (2013). Refactorings para mejorar Procesos de Negocio en Aplicaciones Web (Tesis presentada para obtener el grado de Magister en Ingeniería de Software). Facultad de Informática Universidad Nacional de La Plata.

Carpentier, J. F. (2016). La seguridad informática en la PYME: Situación actual y mejores prácticas. Ediciones ENI.

Cedeño, L., 2015. Analisis De Gestion De Seguridad Informática En Servidores Dedicados Y Vps De La Empresa Reinec C. Ltda En Guayaquil. [Trabajo De Titulación Previo A La Obtención Del Título De Ingeniera En Teleinformática, Universidad De Guayaquil Facultad De Ingeniería Industrial]. Repositorio Institucional de la Universidad de Guayaquil.

Centro Virtual de Conocimiento para Poner Fin a la Violencia contra las Mujeres y Niñas, ONU MUJERES. (10 de octubre de 2010). ¿Cuál es el monitoreo y evaluación? https://www.endvawnow.org/es/articles/330-cul-es-el-monitoreo-y-la-evaluacin.html

Chiavenato, I. (2006). Introducción a la Teoría General de la Administración, Séptima Edición, de, McGraw-Hill Interamericana, (pp. 110).

Choque, J. L. (2020), Sistema De Información Aplicada Al Monitoreo De Índices De Consumo De Gas Natural. (Proyecto de Grado). Universidad Pública de El Alto, La Paz, Bolivia.

Choquehuanca, D. (2020), Sistema De Metadatos Para La Infraestructura De Datos Espaciales, (Proyecto De Grado) Universidad Pública De El Alto, La Paz, Bolivia.

Cinquegrani, S. (2020). Pruebas De Estrés: ¿Qué Son Y Para Qué Las Necesito? Recuperado de https://objectwave.com/es/pruebas-de-estres-que-son-y-para-que-las-necesito/.

Coelho, F. (2021). Significado de Investigación. Significados. https://www.significados.com/investigacion/

Czinkota, M. Kotabe, M, (2001). Administración de Mercadotecnia. Segunda Edición. International Thomson Editores, 2001, (pp. 115).

Definicionyque.es. (14 de diciembre de 2018). Imagen Satelital. Definicionyque.es. https://definicionyque.es/imagen-satelital/

Definicionyque.es. (17 de febrero de 2016). Monitoreo. https://definicionyque.es/monitoreo/

Denzer, P., (23 de octubre de 2002). PostgreSQL. http://profesores.elo.utfsm.cl/~agv/elo330/2s02/projects/denzer/informe.pdf

Deyimar, A. (2023), ¿Qué es un VPS? Todo lo que necesitas saber sobre servidores virtuales. Hostinger Tutoriales. Recuperado el 23 de marzo de 2023. https://www.hostinger.es/tutoriales/que-es-un-vps

Duran, M., Edwin, (2003). Agroeconomia y niveles de desarrollo rural en el departamento de La Paz periodo 1985-2002. Universidad Mayor de San Andrés, La Paz, Bolivia.

En 20 minutos. (s.f.). ¿Qué es el método Científico? Recuperado de https://www.20minutos.es/noticia/4368518/0/que-es-metodo-científico-etapas/

Environmental Intelligence Suite [IBM], (s.f.). ¿Qué son los datos geospaciales? https://www.ibm.com/ar-es/topics/geospatial-

data#:~:text=Los%20datos%20geoespaciales%20son%20informaci%C3%B3n,Tierra %20o%20cerca%20de%20ella.

Esperanza, F y Zerda, H. 2002. Potencialidad de los índices de vegetación Para la discriminación de coberturas forestales. Universidad Nacional de Santiago del Estero, Facultad de Ciencias Forestales, Santiago del Estero, 2002.

Fitzacarrald. A., (2015). Aplicación de un Sistema de Información Geográfico para el monitoreo de las condiciones oceanográficas del Fenómeno "El Niño". (Trabajo De Investigación Para Obtener La Segunda Especialidad Profesional En Hidrografia Y Navegación). Marina De Guerra Del Perú Escuela Superior De Guerra Naval

Flores, F. (2022). Que es Visual Studio Code y que ventajas ofrece. OpenWebinars. https://openwebinars.net/blog/que-es-visual-studio-code-y-que-ventajas-ofrece/

Galiano, L. (2012). Informe de la metodología aplicada en mi solución informática de mi proyecto. [Proyecto Socio – tecnológico]. Instituto Universitario de Tecnología del Estado de Bolívar. http://elproyectodeluisgaliano.blogspot.com/

Geiger, P. (1996) "Des-territorialização e espacialização" Territorio: Globalização e Fragmentação. São Paulo: Hucitec, pp. 223-246.

Geo innova. (2021). Los 9 principales índices de vegetación más usados en teledetección:https://geoinnova.org/blog-territorio/analisis-de-indices-de-vegetacion-en-teledeteccion/

Gil, N., (2020), Monitoreo De Proyectos

Gil, N., (2020), Taller De Planeamiento Estratégico

Gilabert, M., Gonzales, J., Garcia, J., (1997). Acerca de los índices de Vegetacion. Departament de Tenndinamica, Facultad de Fisica, Universitat de Valencia Dr. Moliner, Revista de Teledeteccion (N° 8), 2. http://www.aet.org.es/revistas/revista8/AET8_4.pdf

Gobierno Autonomo Departamental de La Paz. (s.f.). Viacha. http://www.milapaz.travel/municipio/index/viacha

Gonzales, C. (s.f.) Metodologías. Universidad Loyola

Google Earth. (s.f.). EcuRed. https://www.ecured.cu/Google_Earth

Griman. A., Mendoza. L., Perez. M., Ortega. M., (2014). Hacia una certificación de la calidad sistémica en los sistemas de software en Venezuela. Anales de la Universidad Metropolitana.

Hernández Sampieri, R., Fernández Collado, C., & Baptista Lucio, P. (2014). Metodología de la investigación. (6a ed.). México D.F.: McGraw-Hill.

Hernández, J. (2010). Prácticas de Reforestación. Manual Básico.

Hernández, R., Fernández, C., Baptista. (2004). Metodología de la investigación. Tercera edición. McGraw-Hill Interamericana México.

Hernández Sampieri, Roberto, Fernández Collado Carlos, Baptista Lucio, Pilar Ed. (2010). "Metodología de la Investigación" Mc Graw Hill, 5° Edición.

Huanca, K. F. (2020), Sistema De Información Geográficas Aplicado Al Monitoreo De Riesgos De Quema Con Imágenes De Satélite. (Proyecto De Grado). Universidad Pública de El Alto, La Paz, Bolivia.

Ji, Jiahao. (2020), Desarrollo de una herramienta de integración de datos de imágenes de satélite en Google Earth Engine. (Trabajo de Fin de Grado). Universidad Politécnica de Madrid.

Labajo. E., (2015 – 2016). El Metodo Cientifico. (Master en Pericia Sanitaria)

López, A. (2015). Guía para gestionar los datos personales. Madrid: Colección Alianza Formación Gestión.

Lucana, R., Villalobos, M., (2018). Mapa de la cobertura y uso de la tierra periodo 2015 de la Provincia Jose Miguel De Velasco - Santa Cruz. (Trabajo Dirigido). Universidad Mayor de San Andrés, La Paz, Bolivia.

Machuca, F., (2021). ¿Qué es Python? El lenguaje de programación más popular para aprender en 2021. Crehana. https://www.crehana.com/bo/blog/desarrollo-web/que-es-python/

Márquez, A., (2020, marzo 15). Caja blanca vs Caja negra. Recuperado de https://www.testermoderno.com/caja-blanca-vs-caja-negra/.

Martínez, L., (2012). Definición de Modelo. Ingeniería de Software. http://softwareverde.blogspot.com/2012/09/definicion-de-modelo.html

Matellanes Ferreira, R. (22 de febrero del 2020). Todo lo que deberías saber sobre imágenes Landsat. Gis and beers. Blog personal.Consultado en: http://www.gisandbeers.com/lo-deberias-saber-imagenes-landsat/

Mazurek, H. (2005). Definir el territorio para definir una constitución. Encuentro Internacional sobre territorialidad y política. La Paz, Bolivia.

Medicion y estimación: Metodo COSMIC. (2018). Recuperado de http://www.pmoinformatica.com/2018/02/medicion-estimacion-metodo-cosmic.html

Mendoza, A. (2017). Reforestación con el Mijao para el Fortalecimiento de la Biodiversidad. Revista Scientific, 2(4), 11-25, e-ISSN: 2542-2987. Recuperado de: https://doi.org/10.29394/scientific.issn.2542-2987.2017.2.4.1.11-25

Mendoza, L., Perez, M., Griman, A. (2005). Prototipo de Modelo Sistemico de calidad (MOSCA) del software. Computacion y Sistemas, Vol 8 (Num 3), pp 196-217. https://www.researchgate.net/publication/262661215

Morales, A. (s.f.). Descubre el nuevo pgAdmin 4 para trabajar con PostGIS. MappingGIS. https://mappinggis.com/2017/11/descubre-el-nuevo-pgadmin-4-para-trabajar-con-postgis/

Morales, A. (s.f.). Google Earth Engine y como acceder a sus algoritmos desde QGIS. MappingGIS. https://mappinggis.com/2020/01/google-earth-engine-y-como-acceder-a-sus-algoritmos-desde-qgis/

Morales, A. (s.f.). Google Earth Engine y como acceder a sus algoritmos desde QGIS. MappingGIS. https://mappinggis.com/2020/01/google-earth-engine-y-como-acceder-a-sus-algoritmos-desde-qgis/

Mosca ppt. (2012). Recuperado de https://es.slideshare.net/draw507/mosca-ppt

Müller, R., D. Müller, F. Schierhorn, G. Gerold & P. Pacheco. 2012. Proximate causes of deforestation in the Bolivian lowlands – an analysis of spatial dynamics. Regional Environmental Change 12(3): 445-459. http://link.springer.com/article/10.1007%2Fs10113-011-0259-0.

Nair, P.K.R. Classification of agroforestry systems. In: Agroforestry systems in the tropics. (Ed. P.K.R. Nair). Kluwer Academic Press/ICRAF. Dordretch, The Netherlands. p. 39. 1989

Nair, P.K.R. Classification of agroforestry systems. Working paper No. 28. ICRAF. Nairobi, Kenya, 52 p. 1985

Nina, P., Orlando, R., (2012). Ciudades intermedias, otras formas de desarrollo rural integrado. Caso de estudio: municipio de Patacamaya. Universidad Mayor de San Andrés La Paz, Bolivia.

Pabón, H. (s.f.). Forestación ¿Cómo afecta la forestación a los ecosistemas? Fundación Universitaria los libertadores.

Pacheco, P. (2004). Las fronteras agrícolas en el trópico boliviano: entre las situaciones heredadas y los desafíos del presente. Indonesia: Centro de Investigación Forestal Internacional (CIFOR), Investigador asociado, Instituto de Pesquisa Ambiental da Amazônia (IPAM). Brasil.

Pérez Porto, J., Gardey, A. (11 de abril de 2013). Definición de plataforma virtual - Qué es, Significado y Concepto. Definicion.de. Última actualización el 24 de junio de 2021. Recuperado el 7 de febrero de 2023 de https://definicion.de/plataforma-virtual/

Pérez, J. y Gardey, A. (2018). Definición de JavaScript

Definicion.de. https://definicion.de/javascript/

Pérez, M. (12 de mayo del 2021). Investigación. Concepto Definición. https://conceptodefinicion.de/investigacion/

Pico, A., (2013). Definición de ingeniería de sistemas. El blog del Ingeniero de Sistemas. https://ingenierodesistemas.co/editorial/definicion-de-ingenieria-desistemas/

Pineda, O., (2011). Análisis De Cambio De Uso De Suelo Mediante Percepción Remota En El Municipio De Valle De Santiago (Tesis De Maestra En Geomatica). Centro De Investigación En Geografía Y Geomática Ing Jorge L. Tamayo, A.C. Centrogeo

PMOinformatica.com. (2018). 10 Técnicas de estimación de software. Recuperado 14 de junio de 2022 de http://www.pmoinformatica.com/2018/08/tecnicas-estimacion-software.html.

Pollock, N. (2002). Knowledge management and information technology (Know-IT Encyclopedia). Defense Acquisition University Press, (pp. 384).

Porras, A. (2017). Conceptos básicos de estadística. [Diplomado en Analisis de Informacion Geoespacial, CentroGeo].

Procuraduría Ambiental y del Ordenamiento Territorial del D.F., (2003). Uso de Suelo.

Pronostico Experto. (s.f.). ¿Cómo medir la exactitud del pronóstico? https://www.pronosticoexperto.com/cpto-medicion-exactitud

Pruebas de stress sobre aplicaciones web. (2012). Blog. Recuperado de https://www.4rsoluciones.com/blog/pruebas-de-stress-sobre-aplicaciones-web-2/#:~:text=Uno%20de%20los%20an%C3%A1lisis%20que,a%20condiciones%20de%20uso%20extremas.&text=Efectos%20similares%20pueden%20obtenerse%20con,tr av%C3%A9s%20de%20un%20software%20malicioso.

QuestionPro. (2021). Análisis de datos. https://www.questionpro.com/es/analisis-de-datos.html

Quiroga, A. (23 de 03 de 2015). Uml based web engineering.

Ramos, B., (2018). ¿Qué es Google Earth Engine?. Cursos GIS.com. Recuperado de https://www.cursosgis.com/que-es-google-earth-engine/

Rodriguez, A., (s.f.). Introduccion a Google Earth Engine. Geoinformacion. https://cursogeoi.com/curso/introduccion-a-google-earth-engine/

Rodríguez, J. (2005). Definición de JavaScript. Recuperado de https://www.gestiopolis.com/definicion-javascript/

Rodríguez, O., (s.f.). Curso de PostgreSQL. Platzi. https://platzi.com/cursos/postgresql/

Roger S. Pressman. "Ingenieria del software: un enfoque práctico. Sexta edición". Mc Graw Hill 2005.

Rojas, T., Perez, M., Griman, A., Mendoza, L. (2007). Mejora de la calidad del proceso a través de infocas: Un estudio de caso. Revista de la facultad de Ingenieria

Universidad Central de Venezuela, Vol 22 (Num 2). http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0798-40652007000200005

Roldan, P. (2017). Estadistica. Economipedia.com. https://economipedia.com/definiciones/estadistica.html

Sampieri, R. (2006). Metodología de la Investigación. Mc Graw Hill.

Sánchez, S., (2016) Epistemología Método Científico

Sanz, D. (2018). Curso de Fundamentos de Pruebas de Software. Recuperado de https://platzi.com/blog/pruebas-esenciales-para-evaluar-el-rendimiento-de-software/.

Sanz, D. (2019). 4 pruebas esenciales para evaluar el rendimiento de software. Platzi. https://platzi.com/blog/pruebas-esenciales-para-evaluar-el-rendimiento-de-software/

Sites.Google. (s.f.). Métodos estadísticos https://sites.google.com/site/tecnicasdeinvestigaciond38/metodos-estadisticos/1-1-analisis-de-datos

Slideshare. (2018). 1.6.0. gis manual de usuario. https://es.slideshare.net/ileanarousselin264/160-gis-manual-de-usuario

Software caja negra y caja blanca. (2015). Slideshare. Recuperado de https://es.slideshare.net/StudentPc/software-caja-negra-y-caja-blanca.

Software ISO Riesgos y Seguridad. (s.f.). ISOTools EXCELLENCE. Recuperado de https://www.isotools.org/normas/riesgos-y-seguridad/iso-

27001/#:~:text=ISO%2027001%20es%20una%20norma,los%20sistemas%20que%20la%20procesan.&text=La%20Gesti%C3%B3n%20de%20la%20Seguridad,en%20la%20norma%20ISO%2027002. [15/11/2020].

Suarez, H. D. (2013). Norma iso 27000. Recuperado de https://pt.slideshare.net/haroll1/norma-iso-27000/4.

Subia, Y., (2020). Análisis multitemporal de cambio de cobertura vegetal y uso desuelos en El Parque Nacional Bahuaja Sonene y su zona de amortiguamiento. (Tesis de Grado). Universidad Nacional Del Altiplano Facultad De Ciencias Agrarias.

Terán, G., Thellaeche, J., Conde, E., Fundación Alternativas. (2020). Plan De Contingencia Alimentaria: Municipio De Viacha. https://alternativascc.org/wp-content/uploads/2020/12/PCA-Viacha_FINAL-web.pdf

Terrera, G. (2017). Pruebas de caja negra y un enfoque práctico. Recuperado de https://testingbaires.com/pruebas-caja-negra-enfoque-practico/

Tipos de Métodos Científicos (2020). En WikiSabe Recuperado de https://wikisabe.com/tipos-de-metodos-científicos/

Trinchet, C., Selva, A., Trinchet, R., Silva, M., Píriz, A. (2014).La modelación de los objetos y procesos como método para validar los resultados de la investigación científica. Panorama Cuba y Salud, vol. (9), pp. 29. https://www.redalyc.org/pdf/4773/477347195006.pdf

Ucha, F. (2010). Pronostico. Definición ABC. https://www.definicionabc.com/ciencia/pronostico.php

Unidad de Administración Territorial. (s.f.). El ordenamiento territorial en Bolivia (p. 11). Recuperado de http://atlasflacma.weebly.com/uploads/5/0/5/0/5050016/ley_de_ordenamiento_territorial_en_bolivia.pdf

Unión Internacional de Telecomunicaciones [UIT], 2020. Geospacial. https://www.itu.int/es/mediacentre/backgrounders/Pages/geospatial.aspx

United Nations Food and Agriculture Organization (FAO). 2006. Global Forest Resources Assessment 2005: Progress toward sustainable forest management. (http://www.fao.org/forestry/fra2005/en/)

Universia. (2020). Por qué especializarse en Ingeniería de Sistemas. https://www.universia.net/co/actualidad/orientacion-academica/que-especializarse-ingenieria-sistemas-1143711.html

Universidad Continental. (3 de agosto de 2015). Importancia del uso de imágenes satelitales y procesamiento de señales. https://ucontinental.edu.pe/noticias/importancia-del-uso-de-imagenes-satelitales-y-

procesamiento-de-

senales/#:~:text=La%20imagen%20satelital%20es%20una,determinar%20los%20fen %C3%B3menos%20de%20tiempo

Vázquez, C., (s.f.). Estimaciones de software con COSMIC. FATTO Consultoría y Sistemas Medición, Estimación y Requerimientos de Software.

Vazquez. C., (s.f.). Estimacion de Software con Cosmic. Recuperado de https://sg.com.mx/revista/49/estimacion-software-cosmic

Vílchez, J. G. 2000. Introducción a los sistemas de información geoespacial. Consejo de Desarrollo Científico y Humanístico, Universidad de los Andes, Talleres Gráficos Universitarios, Mérida. p.203

Westreicher, G. (2020) Pronostico (estadística). Economipedia.com. https://economipedia.com/definiciones/pronostico-estadistica.html

Wunder, S. (2001). Economics of deforestation. CIFOR

Yirda, A. (2021). Definición de Datos. https://conceptodefinicion.de/datos/

Sandin, Esteban (2003), Investigación cualitativa en educación: Fundamentos y tradiciones, Madrid, Mac Graw Hill, p. 6.

Westreicher, G. (2020). Recursos Forestales. Economipedia. https://economipedia.com/definiciones/recursos-forestales.html

Marconetto, M. 2008. South American Archawology Series. jere Recursos forestales y el proceso de diferenciación social en tiempos Prehispánicos en el Valle de Ambato Catamarca, Argentina.

Bordino, J. (2021). Recursos forestales: que son, tipos y ejemplos. Ecologia verde. https://www.ecologiaverde.com/recursos-forestales-que-son-tipos-y-ejemplos-3335.html

Ramirez, I., 2019). Filezilla; que es, para que sirve y primeros pasos con este cliente de FTP. Xataka. https://www.xataka.com/basics/filezilla-que-sirve-primeros-pasos-este-cliente-ftp

(Alegsa, L., 2010). Definicion de FileZilla.Diccionario de Informatica y Tecnologia. https://www.alegsa.com.ar/Dic/filezilla.php#gsc.tab=0

Garzas, J. (2012). Como estandarizar la evaluación de la calidad del producto software la ISO 9126 y la ISO 25000. https://www.javiergarzas.com/2012/10/iso-9126-iso-25000-1.html

ANEXOS

ARBOL DE PROBLEMAS

No se cuenta con una aplicación que muestre imágenes satelitales y datos respecto a la cobertura forestal del municipio.

Falta de un modelo de seguimiento en base a la cobertura forestal.

La saturación prematura de sus reservas territoriales dando un impacto de transformación ambiental.

¿El Modelo de análisis forestal en base a Google Earth Engine de qué manera contribuirá al monitoreo, análisis de cobertura forestal y muestra de imágenes satelitales al Gobierno Autónomo Municipal de Viacha?

El incremento del proceso de desertificación.

No se tiene estadísticas de la forestación, deforestación y reforestación del municipio lo que lleva a una desinformación a la población.

No se puede visualizar a imágenes satelitales de años anteriores hasta la actualidad para ver los cambios que se tuvo.

ARBOL DE OBJETIVOS

Búsqueda y análisis de imágenes de satélite desde el banco de datos de Google Earth Engine.

Obtener datos y diagnosticar la situación actual del Gobierno Autónomo Municipal de Viacha respecto a su entorno ambiental.

Implementar algoritmos de Google Earth Engine para la realización del modelo aplicado al Gobierno Autónomo Municipal de Viacha.

Diseñar un Modelo de análisis forestal en base a Google Earth Engine aplicado al Gobierno Autónomo Municipal de Viacha, que brinde datos e información de los índices de la cobertura forestal, como también imágenes satelitales con las cuales se puede observar los cambios que se tiene en el Municipio.

Desarrollar aplicaciones utilizando la plataforma Google Earth Engine a fin de conocer la información de los cambios forestales.

Desarrollar reportes de índices de vegetación hasta la actualidad y el pronóstico del mismo.

Analizar la información de la cobertura terrestre para ver y evaluar las variaciones cronológicas.

Señor:

Lic.Ing. William Roque Roque

DIRECTOR DE CARRERA

INGENIERÍA DE SISTEMAS

Presente.-

REF.: AVAL DE CONFORMIDAD

Distinguido ingeniero

Mediante la presente tengo a bien comunicarle mi conformidad de Trabajo de Grado:

TITULO: Modelo de análisis forestal en base a Google Earth Engine aplicado al

Gobierno Autónomo Municipal de Viacha.

MODALIDAD: Tesis de Grado

UNIVERSITARIO: Yhenny Valeriano Huanca

REGISTRO UNIVERSITARIO: 200007092

CEDULA DE IDENTIDAD: 9231200

De tal forma cabe recalcar que el modelo cumple los requerimientos, de esta forma se dio cumplimiento de los objetivos del presente.

Es cuanto certifico, en honor a la verdad para fines consiguientes del interesado, para su defensa pública y evaluación correspondiente a la materia de Taller de Grado II, de acuerdo al reglamento vigente de la carrera de Ingeniería de Sistemas de la Universidad Pública de El Alto.

Atentamente.

Ing. Dionicio Hepry Pacheco Rios

TUTOR METODOLÓGICO

Señor:

Lic. Ing. Dionicio Henry Pacheco Rios

TUTOR METODOLOGICO

TALLER DE GRADO II

Presente.-

REF.: AVAL DE CONFORMIDAD

Distinguido tutor metodológico:

Mediante la presente tengo a bien comunicarle mi conformidad de Trabajo de Grado:

TITULO: Modelo de análisis forestal en base a Google Earth Engine aplicado al Gobierno Autónomo Municipal de Viacha.

MODALIDAD: Tesis de Grado

UNIVERSITARIO: Yhenny Valeriano Huanca

REGISTRO UNIVERSITARIO: 200007092

CÉDULA DE IDENTIDAD 9231200

De tal forma cabe recalcar que el modelo cumple con los requerimientos, de esta forma se dio cumplimiento de los objetivos del presente.

Es cuanto certifico, en honor a la verdad para fines consiguientes del interesado, para su defensa pública y evaluación correspondiente a la materia de Taller de Grado II, de acuerdo al reglamento vigente de la carrera de Ingeniería de Sistemas de la Universidad Publicad de El Alto.

Atentamente.

Lic. Santos Chillo Espinoza

TUTOR REVISOR

Señor:

Lic. Ing. Dionicio Henry Pacheco Rios

TUTOR METODOLOGICO

TALLER DE GRADO II

Presente.-

REF.: AVAL DE CONFORMIDAD

Distinguido tutor metodológico:

Mediante la presente tengo a bien comunicarle mi conformidad de Trabajo de Grado:

TITULO: Modelo de análisis forestal en base a Google Earth Engine aplicado al Gobierno Autónomo Municipal De Viacha.

MODALIDAD: Tesis de Grado II.

UNIVERSITRIO: Yhenny Valeriano Huanca

REGISTRO UNIVERSITARIO: 200007092

CÉDULA DE IDENTIDAD: 9231200

De tal forma cabe recalcar que el modelo cumple con los requerimientos, de esta forma se dio cumplimiento de los objetivos del presente.

Es cuanto certifico, en honor a la verdad para fines consiguientes del interesado, para su defensa pública y evaluación correspondiente a la materia de Taller de Grado II, de acuerdo al reglamento vigente de la carrera de Ingeniería de Sistemas de la Universidad Publicad de El Alto.

Atentamente.

Lic. Gladys Francisca Chuquimia Mamani

TUTOR ESPECIALISTA

MANUAL DE USUARIO

Ingreso al modelo

El modelo de análisis forestal en base a Google Earth Engine consta de 5 módulos, como modulo principal se tiene el módulo de información, el segundo módulo es el de capas el cual se encuentra enlazado junto al Geoserver, en el tercer módulo se encuentra el módulo de timelapse que es un video global respecto al cambio histórico del planeta, en el cuarto módulo encontramos el módulo de grafico de cobertura forestal en el cual nos brinda los datos forestales, como quinto modulo tenemos las imágenes satelitales que nos ayudan a obtener imágenes desde hace años atrás (2016), hasta la actualidad.

ACCESO AL MODULO PRINCIPAL

El usuario accede al módulo principal donde encuentra la información respecto al municipio de Viacha, una breve reseña histórica, lugares con los cuales limitan, municipios vecinos, flora y fauna del municipio. Los cuales puede visualizar de manera fácil y sencilla.

MUNICIPIO DE VIACHA

La provincia Ingavi en el cual se encuentra el Municipio de Viacha, fue creado el 18 de noviembre de 1842 mediante Decreto Supremo en commenocación a la batalla de Ingavi. Tiene una extensión de 5410 km2, Su topográfia tiene un relieve orduidad, con presencia de serrantas, la ciudad de Viacha colinda con la ciudad de El Alto siendo la avenida Jacha Tupho (Distroto 7) el limite territorial elettre ambas. Los principaies ríos son el Desaguadero, el Chama, el jachajahura y el Pallina. El cima es fino, diene temperatura promedio de 8°C. Cuenta con una población aproximada de 80.724 habitantes según censo 2012. Su principal actividad es la gandería, entre las cipue más se destacan son el vacuno, viono porino y camélidos, se encuentra la Fábrica de Cemento SOBOCE, Viacha es conocida como una ciudad industrial y productiva.

INFORMACION DEL **MUNICIPIO**

Territorio del municipio de Viacha

Superficie del municipio de Viacha 844.3 km2

Altitud del municipio de Viacha 3 857 metros de altitud

Latitud: -16.6478 Longitud: -68.2922 Latitud: 16° 38' 52" Sur Longitud: 68° 17' 32" Oeste

Coordenadas geográficas

MUNICIPIOS VECINOS DE VIACHA

Municipios que limitan con Viacha

· ·

Achocalla

Mecapaca

Mecapaca

Municipios vecinos de Viacha

Achocalla 15.8 km Laja 16.2 km

El Alto 18.4 km

 Collana 22.9 km
 Calacoto 25 km
 La Paz 25.5 km

 Mecapaca 29.6 km
 Pucarani 33.5 km
 Calamarca 34.5

Calamarca 34.5 km

Sapahagui 45.3 km Batallas 46.7 km Comanche 48.5 km

Waldo Ballivián 49.5 km

FLORA

El Municipio de Viacha no cuenta con abundantes especies de flora ya que presenta dos pisos ecológicos: - Zona relieve montañosa 35%. - Zona de altiplano y llano 62%. Las llanuras himedas se caracterizan por suelos con bastante fertilidad donde se desarrolla la actividad ganadera lechera y en algunas comunidades la producción de forraje como cebada y avena. Las llanuras secas presentan abundante vegetación compuesta por pastizales y matornales y es apta para la agricultur y ganadería. Existen algunas variedades de flora como ser:

La thola es una planta arbustiva alto andina muy utilizada como planta medicinal, como combustible ecológico y forraje para animales de pastoreo por lo que representa un gran potencial económico.

Waraco Es un cactus típico de los Andes, Ocurre en pastizales de altura requiere de mucha luz y algo de sol directo.

Es una planta acuática, sirve de forraje para los animales, para la fabricación de embarcaciones, casas y entre otros, su consumo es beneficioso para prevenir a prevenir el cáncer de colon y el estreñimiento.

Es un arbusto nativo de las regiones altiplánicas, se adapta a distintos cambios climatológicos. Se dice que permite depurar el organismo y aliviar problemas gastrointestinales, calmar dolores dentales y puede regular los indices de gleremia.

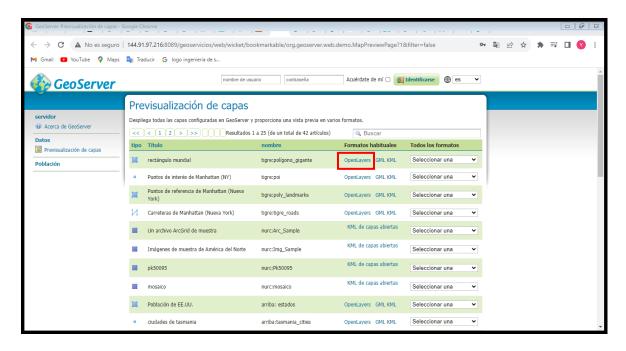
Ichu

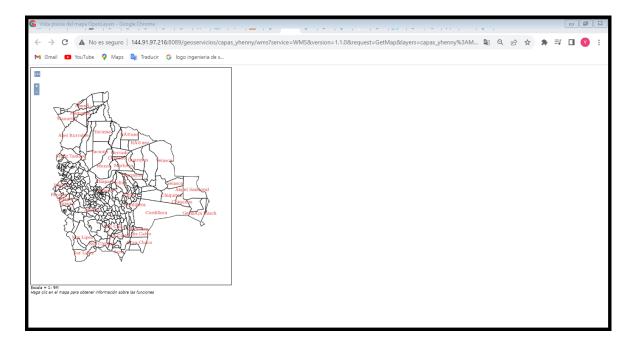
Es un pasto del altiplano andino empleado para la construcción de casas, forraje de animales camélidos altiplánicos.

INFORMACION DE LOS LÍMITES DEL **MUNICIPIO**

> **INFORMACION** DE LA FLORA DEL **MUNICIPIO**

Pajonal	Son pastizales naturales que se encuentran en valles y montañas, son vitales para conservación del agua.	7.3
Chi'lligua	Es una paja suave, con la cual se puede elaborar cestería. Es característica del altiplano y crecen con preferencia en lugares húmedos y cercanos a los ríos. Indicador de las Iluvias y la producción.	
Kiswara	Es un árbol que puede llegar a medir 4 a 6 metros, pueden soportar temperaturas extremadamente bajas, sirve para alhitar problemas hepáticos, de próstata, diabetes, cistitis, reumatismo, artrifis, curar resfrios y cicartizar heridas.	
Suphu Thola	Es un arbusto resinoso, lignificado, erecto, ramoso, se usa como leña y arbusto medicinal	
FAUNA La fauna en Boli	via es muy diversa y amplia ya que depende de las distintas zonas climaticas que se tiene en nuestro país	
Vicuña	Pertenece a la familia de camelidos habitan en la zona Altiplanica, su pelaje es una una de las mas finas en todo el mundo se alimentan de las estepas altoundrans y altiplanicas, estuvo en peligro de extincion y todaca es una especie que requiere de conservación.	
Llama	Es uno de los camelidos mas grandes de Sudamerica habitan especialmente en el Altiplano puede llegar a alcanzar un metro de altura, sus orejas son punteagudas, al ser un camelido grande en algunos lugares suelen utilizar	d
Alpaca	Es un animal mediano pertenece a la familia de camelidos, estatura promedio de 80 a 90 cm, son valiosos a causa de la calidad y la camidad de lana, sus orejas son pequeñas y punteagudas	
Zorro	Son animales mamíferos carnivoros y omnivoros pueden alimentarse de gusanos, insectos, lombrices, roedores, conejos y aves pequeñas, son veloces y pequeños, se los identifica por sus grandes orejas, su color rojico y su cola larga y espesa	MI
Vizcacha	Es un roedor grande, se alimenta de hierbas y vegetales duras, su color de paleje es gris claro o gris pardo, su habitat son los lugares rocosos	
Chinchillas	Son roedores pequeños presas de las aves rapaces, se alimentan de semillas, raíces, hojas, frutos, bayas, corteza, alfalfa y diferentes hierbas, acostumbran vivir en las grietas de las rocas	
Perdiz	Es una ave de la zona altiplanica se encuentra en elevaciones altas en matorrales y pastizales andinos rocosos, es omnivora, hervibora e insectivora	
Colibri	Son aves pequeñas y muy coloridas, miden aproximadamente desde los 5 cm hasta los 20 cm pueden llegar a vivir hasta 18 años, sus solores dependen mucho del sexo del colibri, se alimenta de del nectar de las flores	
Yaka yaka	Tambien conocido como pajaro carpintero andino, tiene el pico largo y afliado, se alimentan en pastizales, pajonales, orillas de rios de gusanos, lanoas, insectos que encuentran por ahi, habita en lugares rocosos, los colores de sus plumas lo ayudan a camuflarse	N. S.


INFORMACION DE LA FAUNA DEL MUNICIPIO


MÓDULO DE CAPAS

Mediante el módulo de capas se logra obtener capas respecto a los lugares estratégicos, como ser: canchas, bancos, iglesias, mercados, unidades educativas y entre otras, las cuales visualizando se pueden obtener los datos de dicho lugar.

Al presionar capas nos re direcciona a la página de pre visualización de capas.

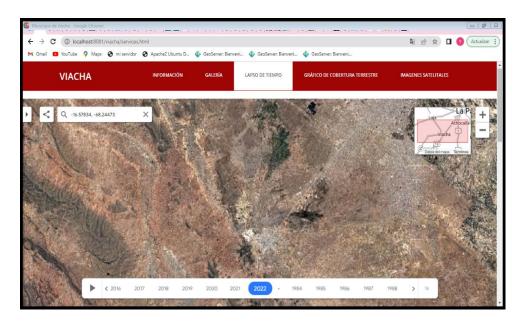
Seguidamente presionamos en OpenLayers. La cual nos mandara a la página de visualización, donde se cargara el mapa.

Presionamos en el lugar de interés para saber la información.

En la parte inferior del mapa se visualiza la información.

Escala = 1: 9M

Municipios_de_Bolivia

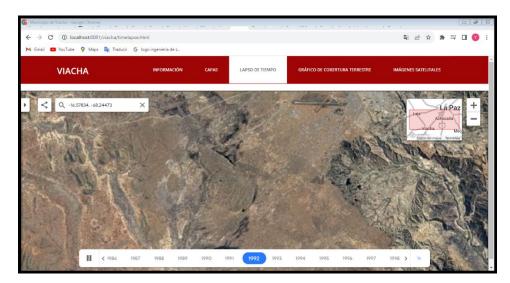

defensor identificación cortar DEPARTAMENTO PROVINCIA MUNICIPIO CAPITAL

Municipios_de_Bolivia 256 255 031003 Cochabamba Chapare Villa Tunari Villa Tunari

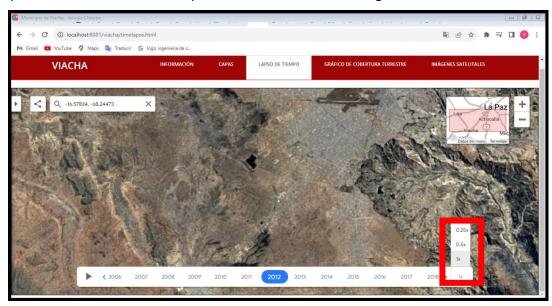
MÓDULO DE LAPSO DE TIEMPO

En este módulo se puede visualizar un video del Municipio de Viacha desde hace años atrás, hasta la actualidad, con los cuales se puede observar los cambios que se tuvo durante estos años.

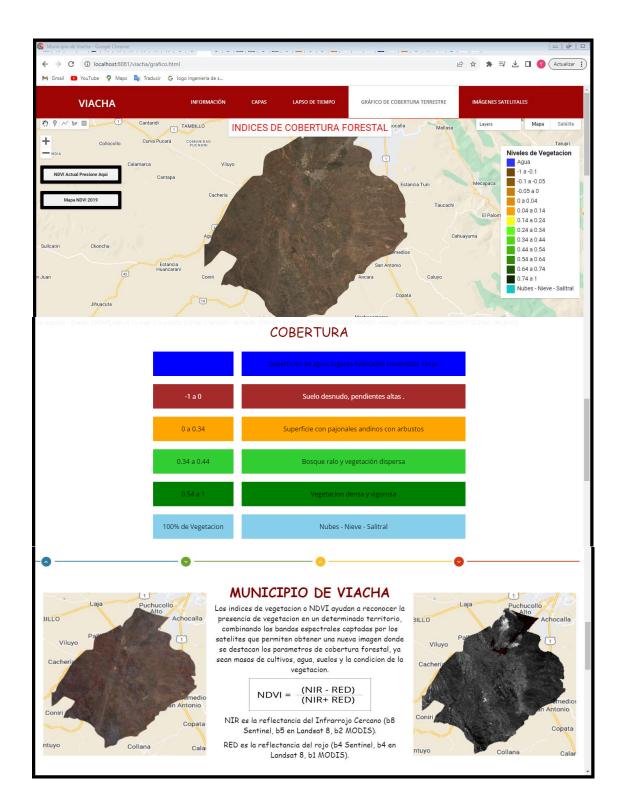
- 1. Ingresamos al módulo Lapso de Tiempo.
- 2. Seguidamente se carga el mapa en la pantalla



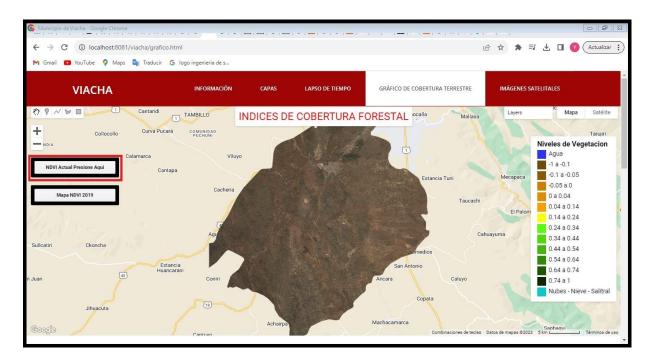
3. Presionamos el botón ▶ para que empiece a reproducir el video.



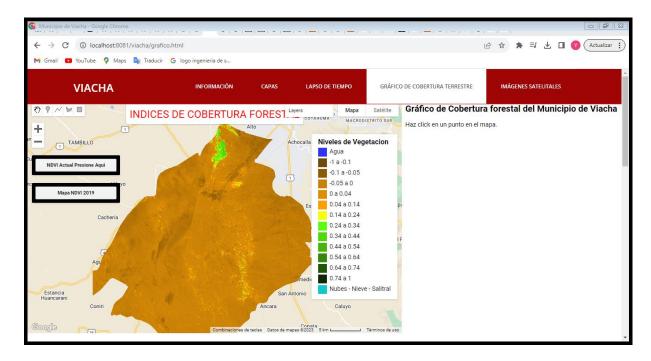
4. Presionamos en II para pausar el video



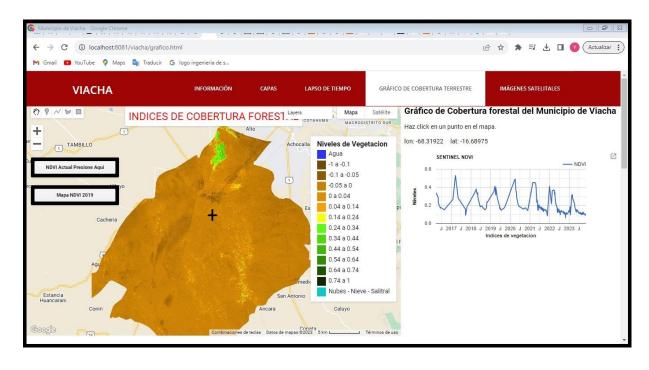
5. Se puede seleccionar el tiempo de duración de las imágenes.

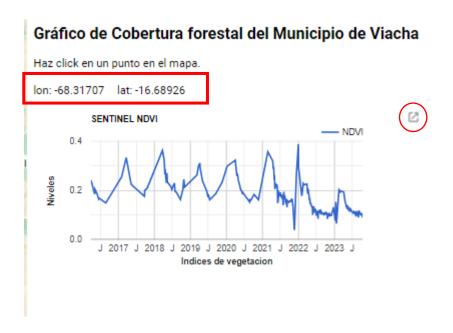


MÓDULO DE GRÁFICO DE COBERTURA FORESTAL

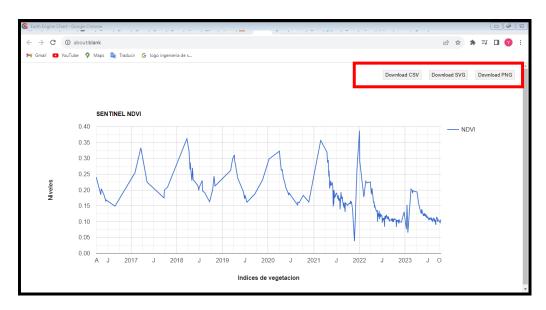

En este módulo nos muestra el mapa Ndvi con la cual se puede observar la diferencia en la cobertura forestal mediante diferentes colores, que van desde el 0% de vegetación hasta el 100%. Como también se genera el grafico de cobertura forestal para su respectivo análisis desde el año 2016 hasta la actualidad, los cuales pueden ser descargados en diferentes formatos (CSV, SVG y PNG).

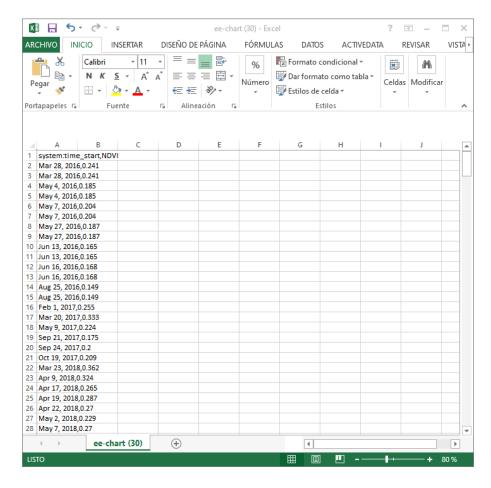
1. Presionamos el botón NDVI

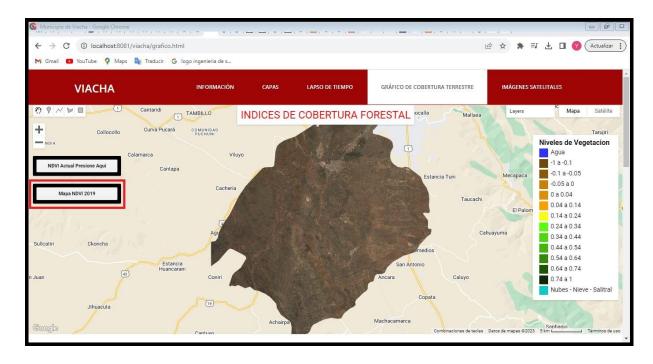

Y seguidamente aparece el panel para el mostrar de grafico de cobertura forestal y el mapa NDVI actual

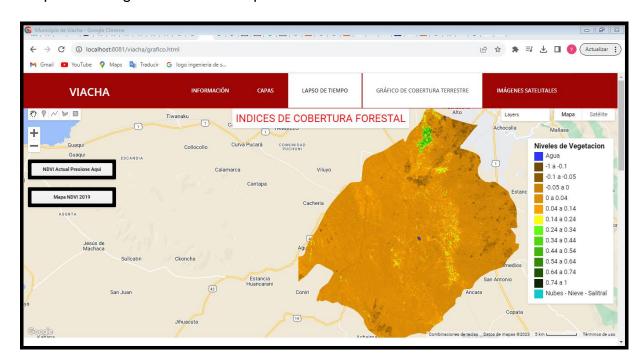

Índices de cobertura forestal

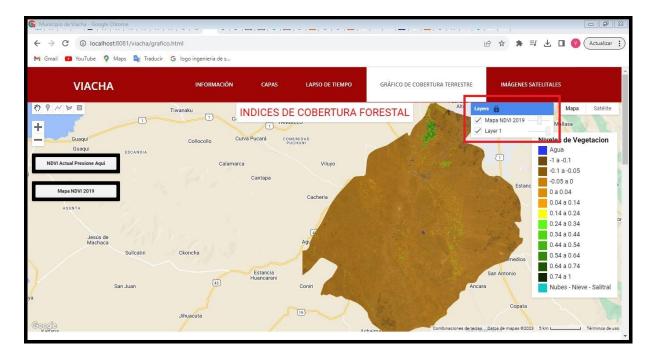
Agua	
-1 a -0.1	
-0.1 a -0.05	
-0.05 a 0	
0 a 0.04	
0.04 a 0.14	
0.14 a 0.24	
0.24 a 0.34	
0.34 a 0.44	
0.44 a 0.54	
0.54 a 0.64	
0.64 a 0.74	
0.74 a 1	
Nubes – nieve – salitral	


Presionamos con el cursor en el lugar de donde queremos generar el grafico

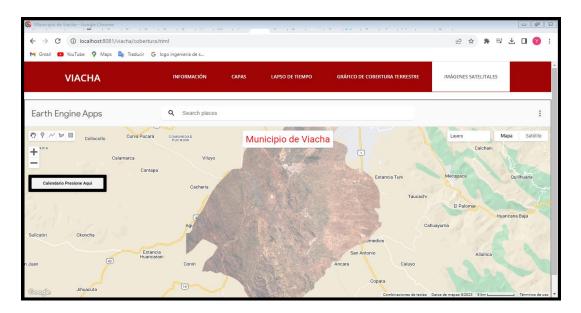

Una vez obtenido el grafico, se muestra la latitud y longitud del punto que seleccionamos.


Presionamos en el grafico para seleccionar en el formato en cual se quiere descargar el grafico.

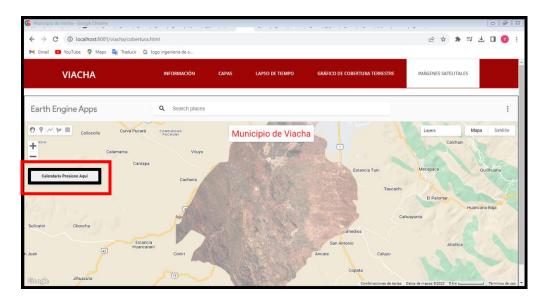

Formato CSV, SVG y PNG las cuales nos ayudan al análisis de la cobertura forestal.


Para visualizar el mapa NDVI 2019 para comparar los cambios que se tuvo, presionamos en el botón Mapa NDVI 2019.

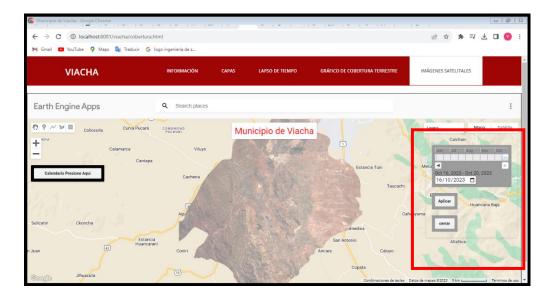
Empieza a cargarse el nuevo mapa del año 2019.



Y mediante la opción Layers donde se puede nivelar la visibilidad del mapa.



MODULO DE IMÁGENES SATELITALES


En este módulo se puede visualizar imágenes satelitales en diferentes años, buscando bajo calendario la fecha de la cual queremos obtener, se brinda imágenes desde 2016 hasta la actualidad.


Presionamos en el botón de calendario.

Una vez presionado nos aparecerá el panel de calendario.

En el panel calendario podemos seleccionar el día, mes y año de la cual queremos obtener la imagen satelital con menor porcentaje de nubes.

Presionamos en Aplicar y se cargara el nuevo mapa.

Como ejemplo se muestra distintas fechas con su respectiva imagen captada.

